• Title/Summary/Keyword: Rainfall estimation

Search Result 929, Processing Time 0.031 seconds

Applicability of Spatial Interpolation Methods for the Estimation of Rainfall Field (강우장 추정을 위한 공간보간기법의 적용성 평가)

  • Jang, Hongsuk;Kang, Narae;Noh, Huiseong;Lee, Dong Ryul;Choi, Changhyun;Kim, Hung Soo
    • Journal of Wetlands Research
    • /
    • v.17 no.4
    • /
    • pp.370-379
    • /
    • 2015
  • In recent, the natural disaster like localized heavy rainfall due to the climate change is increasing. Therefore, it is important issue that the precise observation of rainfall and accurate spatial distribution of the rainfall for fast recovery of damaged region. Thus, researches on the use of the radar rainfall data have been performed. But there is a limitation in the estimation of spatial distribution of rainfall using rain gauge. Accordingly, this study uses the Kriging method which is a spatial interpolation method, to measure the rainfall field in Namgang river dam basin. The purpose of this study is to apply KED(Kriging with External Drift) with OK(Ordinary Kriging) and CK(Co-Kriging), generally used in Korea, to estimate rainfall field and compare each method for evaluate the applicability of each method. As a result of the quantitative assessment, the OK method using the raingauge only has 0.978 of correlation coefficient, 0.915 of slope best-fit line, and 0.957 of $R^2$ and shows an excellent result that MAE, RMSE, MSSE, and MRE are the closest to zero. Then KED and CK are in order of their good results. But the quantitative assessment alone has limitations in the evaluation of the methods for the precise estimation of the spatial distribution of rainfall. Thus, it is considered that there is a need to application of more sophisticated methods which can quantify the spatial distribution and this can be used to compare the similarity of rainfall field.

Spatial-Temporal Interpolation of Rainfall Using Rain Gauge and Radar (강우계와 레이더를 이용한 강우의 시공간적인 활용)

  • Hong, Seung-Jin;Kim, Byung-Sik;Hahm, Chang-Hahk
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.18 no.3
    • /
    • pp.37-48
    • /
    • 2010
  • The purpose of this paper is to evaluate how the rainfall field effect on a runoff simulation using grid radar rainfall data and ground gauge rainfall. The Gwangdeoksan radar and ground-gauge rainfall data were used to estimate a spatial rainfall field, and a hydrologic model was used to evaluate whether the rainfall fields created by each method reproduced a realistically valid spatial and temporal distribution. Pilot basin in this paper was the Naerin stream located in Inje-gun, Gangwondo, 250m grid scale digital elevation data, land cover maps, and soil maps were used to estimate geological parameters for the hydrologic model. For the rainfall input data, quantitative precipitation estimation(QPE), adjusted radar rainfall, and gauge rainfall was used, and then compared with the observed runoff by inputting it into a $Vflo^{TM}$ model. As a result of the simulation, the quantitative precipitation estimation and the ground rainfall were underestimated when compared to the observed runoff, while the adjusted radar rainfall showed a similar runoff simulation with the actual observed runoff. From these results, we suggested that when weather radars and ground rainfall data are combined, they have a greater hydrological usability as input data for a hydrological model than when just radar rainfall or ground rainfall is used separately.

Determination of Unit Hydrograph for the Hydrological Modelling of Long-term Run-off in the Major River Systems in Korea (장기유출의 수문적 모형개발을 위한 주요 수계별 단위도 유도)

  • 엄병현;박근수
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.26 no.4
    • /
    • pp.52-65
    • /
    • 1984
  • In general precise estimation of hourly of daily distribution of the long-term run-off should be very important in a design of source of irrigation. However, there have not been a satisfying method for forecasting of stationar'y long-term run-off in Korea. Solving this problem, this study introduces unit-hydrograph method frequently used in short-term run-off analysis into the long-term run-off analysis, of which model basin was selected to be Sumgin-river catchment area. In the estimation of effective rainfall, conventional method neglects the Soil moisture condition of catchment area, but in this study, the initial discharge (qb) occurred just before rising phase of the hydrograph was selected as the index of a basin soil moisture condition and then introduced as 3rd variable in the analysis of the reationship between cumulative rainfall and cumulative loss of rainfall, which built a new type of separation method of effective rainfall. In next step, in order to normalize significant potential error included in hydrological data, especially in vast catchment area, Snyder's correlation method was applied. A key to solution in this study is multiple correlation method or multiple regressional analysis, which is primarily based on the method of least squres and which is solved by the form of systems of linear equations. And for verification of the change of characteristics of unit hydrograph according to the variation of a various kind of hydrological charateristics (for example, precipitation, tree cover, soil condition, etc),seasonal unit hydrograph models of dry season(autumn, winter), semi-dry season (spring), rainy season (summer) were made respectively. The results obtained in this study were summarized as follows; 1.During the test period of 1966-1971, effective rainfall was estimated for the total 114 run-off hydrograph. From this estimation results, relative error of estimation to the ovservation value was 6%, -which is mush smaller than 12% of the error of conventional method. 2.During the test period, daily distribution of long-term run-off discharge was estimated by the unit hydrograph model. From this estimation results, relative error of estimation by the application of standard unit hydrograph model was 12%. When estimating by each seasonal unit bydrograph model, the relative error was 14% during dry season 10% during semi-dry season and 7% during rainy season, which is much smaller than 37% of conventional method. Summing up the analysis results obtained above, it is convinced that qb-index method of this study for the estimation of effective rainfall be preciser than any other method developed before. Because even recently no method has been developed for the estimation of daily distribution of long-term run-off dicharge, therefore estimation value by unit hydrograph model was only compared with that due to kaziyama method which estimates monthly run-off discharge. However this method due to this study turns out to have high accuracy. If specially mentioned from the results of this study, there is no need to use each seasonal unit hydrograph model separately except the case of semi-dry season. The author hopes to analyze the latter case in future sudies.

  • PDF

A Review for Caluculation of the Formula for Probable Rainfall Intensities Following Return Periods in the Hydrological Statistics. -On Cheong-Ju district- (재현기간별 확률 향우강도식 산정에 관한 수문통계학적 고찰-청주 지방을 중심으로-)

  • 이순혁
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.17 no.3
    • /
    • pp.3848-3859
    • /
    • 1975
  • The author attempted to find most suitable formulas for probable rainfall intensities with analysis and consideration for characteristics of rainfall intensities according to the short and long period return periods at Cheong-Joo district. Above mentioned formulas induced by this study can be contributed to the credibility of runoff estimation for urban sewerage system, drainage works in small catchment area and embankment works in the rivers. The results of this study are summarized as follows: 1 Calculation values by Gumbel-Chow method were selected as a mean values for the calculation of probable rainfall intensities according to return periods in the short period. 2. Calculations for probable rainfall intensities for long period are based upon to the result by Iwai's method. Talbot type, {{{{I= {a} over {t+b} }}}} is confirmed as a most suitable formula for probable rainfall intensities among calculation methods in the short periods at Cheong-Joo district. 4. Specific coefficient method, I24=RN24${\beta}$N was selected as a means of calculation for suitable formulas of probable rainfall intensities according to return periods in case of long period. 5. Runoff estimation with high credibility by rational formula can be anticipated by establishment for the most suitable probable rainfall intensities at Cheong-Joo district.

  • PDF

Optimal Network Design for the Estimation of Areal Rainfall (면적강우량 산정을 위한 관측망 최적설계 연구)

  • Lee, Jae-Hyeong;Yu, Yang-Gyu
    • Journal of Korea Water Resources Association
    • /
    • v.35 no.2
    • /
    • pp.187-194
    • /
    • 2002
  • To improve the accuracy of the areal rainfall estimates over a river basin, the optimal design method of rainfall network was studied using the stochastic characteristics of measured rainfall data. The objective function was constructed with the estimation error of areal rainfall and observation cost of point rainfall and the observation sites with minimum objective function value were selected as the optimal network. As a stochastic variance estimator, kriging model was selected to minimize the error terms. The annual operation cost including the installation cost was considered as the cost terms and an accuracy equivalent parameter was used to combine the error and cost terms. The optimal design method of rainfall network was studied in the Yongdam dam basin whose raingauge numbers need to be enlarged for the optimal rainfall networks of the basin.

Estimation of Parameters of the Linear, Discrete, Input-Output Model (선형 이산화 입력-출력 모형의 매개변수 결정에 관한 연구)

  • 강주복;강인식
    • Journal of Environmental Science International
    • /
    • v.2 no.3
    • /
    • pp.193-199
    • /
    • 1993
  • This study has two objectives. One is developing the runoff model for Hoe-Dong Reservoir basin located at the upstream of Su-Young River in Pusan. To develop the runoff model, basic hydrological parameters - curve number to find effective rainfall, and storage coefficient, etc. - should be estimated. In this study, the effective rainfall was calculated by the SCS method, and the storage coefficient used in the Clark watershed routing was cited from the report of P.E.B. The other is the derivation of transfer function for Hoe-Dong Reservoir basin. The linear, discrete, input-output model which contained six parameters was selected, and the parameters were estimated by the least square method and the correlation function method, respectively. Throughout this study, rainfall and flood discharge data were based on the field observation in 1981.8.22 - 8.23 (typhoon Gladys). It was observed that the Clark watershed routing regenerated the flood hydrograph of typhoon Gladys very well, and this fact showed that the estimated hydrological parameters were relatively correct. Also, the calculated hydrograph by the linear, discrete, input-output model showed good agreement with the regenerated hydrograph at Hoe-Dong Dam site, so this model can be applicable to other small urban areas. Key Words : runoff, effective rainfall, SCS method, clark watershed iou상ng, hydrological parameters, parameter estimation, least square method, correlation function method, input-output model, typhoon gladys.

  • PDF

Half-hourly Rainfall Monitoring over the Indochina Area from MTSAT Infrared Measurements: Development of Rain Estimation Algorithm using an Artificial Neural Network

  • Thu, Nguyen Vinh;Sohn, Byung-Ju
    • Journal of the Korean earth science society
    • /
    • v.31 no.5
    • /
    • pp.465-474
    • /
    • 2010
  • Real-time rainfall monitoring is of great practical importance over the highly populated Indochina area, which is prone to natural disasters, in particular in association with rainfall. With the goal of d etermining near real-time half-hourlyrain estimates from satellite, the three-layer, artificial neural networks (ANN) approach was used to train the brightness temperatures at 6.7, 11, and $12-{\mu}m$ channels of the Japanese geostationary satellite MTSAT against passive microwavebased rain rates from Tropical Rainfall Measuring Mission (TRMM) Microwave Imager (TMI) and TRMM Precipitation Radar (PR) data for the June-September 2005 period. The developed model was applied to the MTSAT data for the June-September 2006 period. The results demonstrate that the developed algorithm is comparable to the PERSIANN (Precipitation Estimation from Remotely Sensed Information using Artificial Neural Networks) results and can be used for flood monitoring across the Indochina area on a half-hourly time scale.

Variation of Non-Point Source Pollution according to AMC Condition Using Probable Rainfall (확률강우량을 이용한 AMC 조건에 따른 비점원 오염량의 변화)

  • 안승섭
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.42 no.3
    • /
    • pp.76-88
    • /
    • 2000
  • AGNPS model is applied in this study to analyze the changes of non-point source pollutant according to AMC condition using probable rainfall. Probable rainfall of H-dam area by Gumber's extreme value distribution is computed through frequency analysis for each return period. 35 coarse grids are subdivided into 134 find grids of finite differential network to analyze peak flow soil loss quantity and nutrients of study area and the modified CN estimation equation shows good result about rainfall events-peak flow relationship. And as the consequence of estimation of soil loss quantity for each rainfall event soil loss quantity shows 120%-170% of actual soil loss quantity Regression analysis for the observed and calculated values of flow T-P AMC has an important effect on nutrients concentration of outflow and it if found that the excessive fertilization under AMC III condition may cause eutrophication by nutrients because the range of increase of outflow concentration appears relatively high.

  • PDF

Saturation Depth and Slope Stability considering Unsteady Rainfall in Natural Slope (비정상강우를 적용한 자연사면에서의 포화깊이 산정 및 사면안정성 평가)

  • Kim, Sang-Hoon;Kim, Seong-Pil;Son, Young-Hwan;Heo, Joon;Chang, Pyoung-Wuck
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.49 no.1
    • /
    • pp.57-65
    • /
    • 2007
  • In Korea, most landslides occurr during the rainy season and have shallow failure planes parallel to the slope. For these types of rainfall-induced failures, the most important factor triggering slope unstability is decrease in the matric suction of unsaturated soils with increasing saturation depth by rainfall infiltration. For this reason, estimation of cumulative infiltration has a significance. In this study, infiltration rate and cumulative infiltration are estimated by using both Mein & Larson model based on Green-Ampt infiltration model and using modified Mein & Larson model to which unsteady rainfall is applied. According to the results, the modified model is more reasonable than Mein & Larson method itself in estimation of infiltration rate and saturation depth because of considering real pending condition.

Spatial Rainfall Considering Elevation and Estimation of Rain Erosivity Factor R in Revised USLE Using 1 Minute Rainfall Data and Program Development (고도를 고려한 공간강우분포와 1분 강우자료를 이용한 RUSLE의 강우침식인자(R) 산정 및 프로그램 개발)

  • JUNG, Chung-Gil;JANG, Won-Jin;KIM, Seong-Joon
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.19 no.4
    • /
    • pp.130-145
    • /
    • 2016
  • Soil erosion processes are affected by weather factors, such as rainfall, temperature, wind, and humidity. Among these factors, rainfall directly influences soil erosion by breaking away soil particles. The kinetic energy of rainfall and water flow caused by rain entrains and transports soil particles downstream. Therefore, in order to estimate soil erosion, it is important to accurately determine the rainfall erosivity factor(R) in RUSLE(Revised Universal Soil Loss Equation). The objective of this study is to evaluate the average annual R using 14 years(2002~2015) of 1 minute rainfall data from 55 KMA(Korea Meteorological Administration) weather stations. The R results from 1 min rainfall were compared with previous R studies using 1 h rainfall data. The determination coefficients($R^2$) between R calculated using 1 min rainfall data and annual rainfall were 0.70-0.98. The estimation of 30 min rainfall intensity from 1 min rainfall data showed better $R^2$ results than results from 1 h rainfall data. For estimation of physical spatial rain erosivity(R), distribution of annual rainfall was estimated by IDW(Inverse Distance Weights) interpolation, taking elevation into consideration. Because of the computation burden, the R calculation process was programmed using the python GUI(Graphical User Interface) tool.