• Title/Summary/Keyword: Rainfall class method

Search Result 14, Processing Time 0.028 seconds

Revised AMC for the Application of SCS Method (SCS 유효우량 산정방법 적용을 위한 선행토양함수조건의 재설정(장평유역을 중심으로))

  • Park, Cheong-Hoon;Yoo, Chul-Sang;Kim, Joong-Hoon
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2005.05b
    • /
    • pp.578-582
    • /
    • 2005
  • In this study, the conceptual foundation and development process of the Antecedent soil Moisture Condition(AMC) in SCS runoff curve number method are reviewed. Although the runoff volume is very sensitive with AMC condition, the AMC class limits developed in SCS(1972) are used in rainfall-runoff analysis without careful consideration. Tn this study, following the SCS curve number development process, rainfall-runoff characteristics of the Jang-Pyung subbasin subject to the Pyung-Chang River basin are analyzed to evaluate the reasonability of the AMC class limits at present. The New AMC class limits are proposed by the sensitive analysis of the antecedent rainfall - curve number value. As a result, the classification value of AMC-I with II is 22mm of antecedent 5-day rainfall amount, and the classification of AMC-II with III is 117mm in growing season. When the New AMC class limits are applied to Jang-Pyung subbasin, AMC probability distribution shows that the AMC-II has increased remarkably even though the AMC-I has a little higher value. But the AMC-III has the smallest one. According to the conceptual basis of the curve number method, the AMC probability distribution, the New AMC class limits adopted, gives reasonable results.

  • PDF

Comparison of Estimation Method of Pollutant Unit Loads from Bridge Area (교량지역의 다양한 비점오염물질 원단위 산정방법 비교)

  • Kim, Taewon;Gil, Kyungik
    • Journal of Korean Society on Water Environment
    • /
    • v.27 no.5
    • /
    • pp.597-604
    • /
    • 2011
  • This research analyzed the runoff patterns and estimated unit loads of selected pollutatnts using monitored data conducted for three years in a bridge area. Three estimating methods; the arithmetic average method, the regression method and the rainfall class method were used to estimate the unit load. Results of three estimating methods were compared with the unit pollutant loads from landuses in Korea and the unit pollutant loads from urban watersheds in Milwaukee, USA. Unit load using the arithmetic mean method were found to be overestimated. In terms of TSS, unit loads of two estimate were half lower than that of USA. Estimated TN and TP unit loads of three estimate were lower than that of Ministry of Environment in Korea.

Multivariate Time Series Analysis for Rainfall Prediction with Artificial Neural Networks

  • Narimani, Roya;Jun, Changhyun
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2021.06a
    • /
    • pp.135-135
    • /
    • 2021
  • In water resources management, rainfall prediction with high accuracy is still one of controversial issues particularly in countries facing heavy rainfall during wet seasons in the monsoon climate. The aim of this study is to develop an artificial neural network (ANN) for predicting future six months of rainfall data (from April to September 2020) from daily meteorological data (from 1971 to 2019) such as rainfall, temperature, wind speed, and humidity at Seoul, Korea. After normalizing these data, they were trained by using a multilayer perceptron (MLP) as a class of the feedforward ANN with 15,000 neurons. The results show that the proposed method can analyze the relation between meteorological datasets properly and predict rainfall data for future six months in 2020, with an overall accuracy over almost 70% and a root mean square error of 0.0098. This study demonstrates the possibility and potential of MLP's applications to predict future daily rainfall patterns, essential for managing flood risks and protecting water resources.

  • PDF

A Study on the Estimation Methods of Nonpoint Pollutant Unit Load - Focus on Nonpoint Pollutant Unit Load in Paddy Field - (비점오염 발생 원단위 산정방법에 대한 고찰 - 논 비점오염 원단위를 중심으로 -)

  • Choi, DongHo;Choi, Soon-Kun;Kim, Min-Kyeong;Hur, Seung-Oh;Hong, Sung Chang;Yeob, So-Jin;Yoon, KwangSik
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.61 no.3
    • /
    • pp.15-22
    • /
    • 2019
  • In order to preserve water environment, Total Maximum Daily Load(TMDL) is used to manage the total amount of pollutant from various sources, and the annual average load of source is calculated by the unit load method. Determination of the unit load requires reliable data accumulation and analysis based on a reasonable estimation method. In this study, we propose a revised unit load estimation method by analyzing the unit load calculation procedure of National Institute of Environment Research(NIER) method. Both methods were tested using observed runoff ratio and water quality data of rice paddy fields. The estimated values with the respective NIER and revised NIER methods were highly correlated each other. However, the Event Mean Concentration(EMC) and the runoff ratio considered in the NIER method appeared to be influenced by rainfall classes, and the difference in unit load increases as the runoff and EMC increase. The error can be further increased when the EMC and runoff ratio are changed according to changes in rainfall patterns by climate change and change of agricultural activities. Therefore, it is recommended to calculate unit load by applying the revised NIER method reflecting the non point pollution runoff characteristics for different rainfall classes.

Installation and operation of automatic nonpoint pollutant source measurement system for cost-effective monitoring

  • Jeon, Jechan;Choi, Hyeseon;Shin, Dongseok;Kim, Lee-hyung
    • Membrane and Water Treatment
    • /
    • v.10 no.1
    • /
    • pp.99-104
    • /
    • 2019
  • In Korea, nonpoint pollutants have a significant effect on rivers' water quality, and they are discharged in very different ways depending on rainfall events. Therefore, preparing an optimal countermeasure against nonpoint pollutants requires much monitoring. The present study was conducted to help prepare a method for installing an automatic nonpoint pollutant measurement system for the cost-effective monitoring of the effect of nonpoint pollutants on rivers. In the present study, monitoring was performed at six sites of a river passing through an urban area with a basin area of $454.3km^2$. The results showed that monitoring could be performed for a relatively long time interval in the upstream and downstream regions, which are mainly comprised of forests, regardless of the rainfall amount. On the contrary, in the urban region, the monitoring had to be performed at a relatively short time interval each time when the rainfall intensity changed. This was because the flow rate was significantly dependent on the rainfall's intensity. The appropriate sites for installing an automatic measurement system were found to be a site before entering the urban region, a site after passing through the urban region, and the end of a river where the effects of nonpoint pollutant sources can be well-decided. The analysis also showed that the monitoring time should be longer for the rainfall events of a higher rainfall class and for the sites closer to the river end. This is because the rainfall runoff has a longer effect on the river. However, the effect of nonpoint pollutant sources was not significantly different between the upstream and the downstream in the cases of rainfall events over 100 mm.

A Programming of Hydrologic Analysis Procedure for the Probable Isohyetal Chart in Korea (한국 확률강우량도 작성을 위한 수문해석방법 개발)

  • 이원환
    • Water for future
    • /
    • v.20 no.2
    • /
    • pp.139-150
    • /
    • 1987
  • The present study is to develop the hydrologic analysis procedure for the purpose of drawing the probable isohyetal charts in Korea. In the establishment of optimal distribution types, the eleven continuous probability distribution types included the transformed variable normal distribution (Y-k method) is applied to the annual maximum rainfall depth series in each duration. The optimal selection of distribution is done by Chi-square test and Kolmogorov-Smirnov test in the eui-class interval. The application of probability distribution is checked by the fitting on four durations of annual maximum rainfall data(10 min., 60 min., 6 hrs., and 24hrs.) at four meteorological stations in Korea (Seoul, In Cheon, Bu san, and Kwang Ju). The properties in hydrologic application of the considered distribution and the hydrologic characteristics of the applied rainfall data groups are investigated from the results of this study.

  • PDF

A Studay on the Rainfall and Drought Days in Kyupgpook Area (경북지방(慶北地方)의 강수(降水) 및 무강수(無降水) 현상(現象) 조사(調査) 분석(分析))

  • Suh, Seung Duk;Jeon, Kuk Jin
    • Current Research on Agriculture and Life Sciences
    • /
    • v.5
    • /
    • pp.143-157
    • /
    • 1987
  • In order to determine the design precipitation, the most probable daily precipitation and annual precipitation at every spot are calculated and iso - precipitation line are drawn. Probability of precipitation and drought phenomena of each gage station are analyzied by the method of frequency analysis from the statistical conceptions. The results summarized in this study are as the follows. 1. Annual mean precipitation in kyungpook area are 1044 mm, about 115 mm less than annual mean precipitation of Korea amounts to l1S9mm, and found to regionally unequal. 2. Monthly mean rainfall of July is 242.2mm, 23.2%, August 174.2mm, 16.7%, June 115mm, 11% and September 114.2mm, 10.9% and Rainfall depth of July-August are more than 40% of annual precipition. This shows notable summer rainy weather by typoon and low pressure storm and seasonal unbalance of water supply. 3. The relation among the maximum precipi.tation per day, per two continuous days and per three contnous days are caculated and the latter is found 31.0% increased rate of the first and the last 48.2% increased rate of first. 4. Probability precipitation in Kyungpook area are shown as 9.0%(5 year), 13.3%(10 year), 17.7%(20 year), 23.1%(50 year), 27.0%(100 year) and 31.1%(200 year) increased rate of each recurrence year compared with observed average annual precipitation. 5. From annual precipitation and maximum daily rainfall data probability of precipitation and precipitation isohyetal line are derived which shown as Table 11 and Fig. 8. 6. Drought days are divided 6 class and analysed results are shown on table 12. Average occurrence time of 10-14 continuous drought days are 2.3 time per year, 15-19 days are 0.9 time per year, 20-24 days are one per six years, 30-34 days are once per nine years and over than 35days are once per 25 years.

  • PDF

Runoff and Erosion of Alachlor, Ethalfluralin, Ethoprophos and Pendimethalin by Rainfall Simulation (인공강우에 의한 alachlor, ethalfluralin, ethoprophos 및 pendimethalin의 토양표면 유출)

  • Kim, Chan-Sub;Ihm, Yang-Bin;Lee, Young-Deuk;Oh, Byung-Youl
    • Korean Journal of Environmental Agriculture
    • /
    • v.25 no.4
    • /
    • pp.306-315
    • /
    • 2006
  • Two different experiments, adsorption/desorption and runoff by rainfall simulation of four pesticides, such as alachlor, ethalfluralin, ethoprophos and pendimethalin were undertaken their runoff and erosion losses from sloped land and to assess the influence of their properties and environmental factors on them. The mobility of four pesticides and which phase they were transported by were examined in adsorption study, and the influence of rainfall pattern and sloping degree on the pesticide losses were evaluated in simulated rainfall study. Freundlich adsorption parameters (K) by the adsorption and desorption methods were 1.2 and 2.2 for ethoprophos, 1.5 and 2.6 for alachlor, respectively. And adsorption distribution coefficients (Kd) by the adsorption and desorption methods were 56 and 94 for ethalfluralin, and 104 and 189 for pendimethalin, respectively. K or Kd values of pesticides by the desorption method which were desorbed from the soil after thoroughly mixing, were higher than these ones by the adsorption method which pesticides dissolved in water were adsorbed to the soil. Another parameter (1/n), representing the linearity of adsorption, in Freundlich equation for the pesticides tested ranged from 0.96 to 1.02 by the desorption method and from 0.87 to 1.02 by the adsorption method. Therefore, the desorption method was more independent from pesticide concentration in soil solution than the adsorption method. By Soil Survey and Land Research Center (SSLRC)'s classification for pesticide mobility, alachlor and ethoprophos were classified into moderately mobile $(75{\leq}Koc<500)$, and ethalfluralin and pendimethalin were included to non-mobile class (Koc > 4000). Runoff and erosion loss of pesticides by three rainfall scenarios were from 1.0 to 6.4% and from 0.3 to 1.2% for alachlor, from 1.0 to 2.5% and from 1.7 to 10.1% for ethalfluralin, from 1.3 to 2.9% and from 3.9 to 10.8% for pendimethalin, and from 0.6 to 2.7% and from 0.1 % 0.3% for ethoprophos, respectively. Distribution of pesticides in soil profile were investigated after the simulated rainfall study. Alachlor and ethoprophos were leached to from 10 to 15 cm of soil layer, but ethalfluralin and pendimethalin were mostly remained at the top 5 cm of soil profile. The losses of the pesticides at 30% of sloping degree were from 0.2 to 1.9 times higher than those at 10%. The difference of their runoff loss was related with their concentration in runoff water while the difference of their erosion loss must be closely related with the quantity of soil eroded.

Runoff of Endosulfan by Rainfall Simulation and from Soybean-grown Field Lysimeter (인공강우와 콩재배 포장 라이시메타를 이용한 endosulfan의 유출량 평가)

  • Kim, Chan-Sub;Lee, Hee-Dong;Ihm, Yang-Bin;Im, Geon-Jae
    • Korean Journal of Environmental Agriculture
    • /
    • v.26 no.4
    • /
    • pp.343-350
    • /
    • 2007
  • Three different experiments were carried out to investigate the runoff and erosion losses of endosulfan from sloped-field by rainfall. The mobility of endosulfan and which phase it was transported by were examined in adsorption study, the influence of rainfall pattern and slope degree on the pesticide loss were evaluated in simulated rainfall study, and the pesticide losses from soybean-grown field comparing with bare soil were measured in field lysimeter study. Adsorption parameter (K) of endosulfan ranged from 77 to 131 by adsorption method and K values by the desorption method were higher than those by the adsorption method. By the SSLRC's classification for pesticide mobility endosulfan was classified as non-mobile class ($K_{oc}>4,000$). Runoff and erosion loss of endosulfan by three rainfall scenarios ranged from 3.4 to 5.6%and from 4.4 to 15.6%of the amount treated. Endosulfan residues were mainly remained at the top 5 cm of soil depth after the simulated rainfall study. Pesticide loss in case of 30%-slope degree ranged from 0.6 to 0.9 times higher than those in case of 10%-slope degree. The difference of pesticide runoff loss was related with its concentration in runoff water and the difference of pesticide erosion loss would related closely with the quantity of soil eroded. Endosulfan losses from a series of lysimeter plots in sloped land by rainfall ranged from 5 to 35% of the amount treated. The erosion rate of endosulfan from soybean-plots was 66% of that from bare soil plots. The effect of slope conditions was not great for runoff loss, but was great for erosion loss as increasing to maximum $4{\sim}12$ times with slope degree and slope length. The peak runoff concentration of endosulfan in soybean-plots and bare soil plots ranged from 8 to 10 and from 7 to $9{\mu}gL^{-1}$ on nine plots with different slope degree and slope length. Therefore the difference of the peak runoff concentrations between bare soil plots and soybean-plots were not great.

Development of a New Clay Roof Tiles for the Reduction of Weight in Korean-Style Roof (한옥지붕 경량화를 위한 신형 한식기와 개발)

  • Park, Jin Cheol;Chung, Chan Hong
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.12
    • /
    • pp.765-771
    • /
    • 2019
  • New Korean-style clay roof tiles have been developed with a focus on significantly reducing the roof's weight while maintaining the strength, absorption rate, and freeze durability. The backflow of rain water through the gaps between roof tiles is prevented by employing baffles and a groove to accelerate water flow. With the new roof tiles, dry construction of a roof is possible without requiring soil. By using the dry construction method with the new roof tiles, a reduction in roof weight of more than 80% is possible compared to the conventional wet construction method with soil. In the case of a traditional Korean-style house with a building area of 99 square meters, the roof weight can be reduced from 135 tons to 24 tons. The new tiles satisfy the KS requirements and are more than 30% lighter than traditional roof tiles. A roof constructed using the new tiles showed no water leaks when exposed to typhoon-class winds with speeds of 17 m/s and 200 mm/h of rainfall, which is 60% higher than the Korea rainfall record. The new roof tiles also have advantages of economic efficiency, workability, maintenance, and aseismicity compared to previous Korean-style roof tiles.