• Title/Summary/Keyword: Rainfall changes

Search Result 600, Processing Time 0.024 seconds

Mineral Leaching from Air-Dried Forages (마른 목초(牧草) 잎으로 부터의 무기물(無機物) 용출(溶出))

  • Kim, S.D.;YOSHIDA, Shigekata
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.19 no.3
    • /
    • pp.265-272
    • /
    • 1999
  • In this study in order to know the behavior of mineral nutrients from forage plant to soil in a grassland ecosystem, the leaching of minerals (K, Mg, Ca, N and P) from air-dried (dead) plant body was investigated by putting orchardgrass (Dactylis glomerata L.) hay on meadow during a month with seasonal changes. The results obtained were as follows; 1) The K content of the forage, not stable during the experimental seasons, tended to decrease in the summer of 1986, while the Mg and Ca contents increased in the summer. The reason might be a different response (solubility or leaching liability) of the monovalent mineral (K) and divalent ones (Mg and Ca) in the forage to rainfall. 2) The percentage of P to the initial amount in the forage showed larger decrease in a rainy period (Feb.~Mar., 1986) and during the rainy summer (May to July). The P component of the forage might be easily leached with water. 3) The percentage of the four minerals (Ca, N, Mg, K) remained the least in the period of (Jun.~Jul., 1986), 4) Though the percentage of remained Mg and N of the forage varied very similarly, the percentage of remained N was higher than that of Mg during periods before summer (January to May), while after the period the ratio of the Mg seemed to be higher than that of the N (June to December), 5) During the periods until (May~Jun., 1986) the percentage of remained K and P of the forage varied in very similar pattern, and the order of remained mineral was as follows; $Ca>N{\geq}Mg>P=K$. But from the period of (Jun-Jul) the ratio of P remained in the forage increased nearly up to the ratio of N, and the order was as follows; $Ca>Mg{\geq}N{\geq}P>K$.

  • PDF

Evaluation of Filtration and Backwash Efficiency of Non-point Source Pollution Reduction Facility (장치형 비점오염원 저감시설의 여과 및 역세 효율 평가)

  • Yun, Sangleen;Lee, Yong-Jae;Ahn, Jae-Hwan;Choi, Won-Suk;Lee, Jungwoo;Oh, Hye-Cheol;Kim, Seog-Ku
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.39 no.12
    • /
    • pp.664-671
    • /
    • 2017
  • Non-point source pollution is the emission source that unspecifically releases pollutants to water system from unspecific places such as cities, agricultural lands, mountains, and construction sites and its discharge path is not easily identified. Also, it is difficult to design and manage the reduction facilities for the emission quantity is primarily affected from weather conditions like rainfall. Since 2006, the significance of non-point source pollution reduction has been grown in Republic of Korea and this reinforces needs for the installation of reduction facilities. However, because the standards for the installation details and reduction efficiency are not clarified by law, people are preferring technologies that do not require particular maintenance and high expenses. The purpose of this study is to examine and maintain the efficiency of non-point source pollutants reduction facility which uses expended polypropylene as a media. The higher the depth of the media, the less range of variations in the reduction efficiency was observed and the final efficiency was also increased. When the media depth was 60 cm, the average reduction efficiency was 94% and 90% where linear velocities were 10 m/hr and 20 m/hr respectively. The results from 180 minutes operation in 10 m/hr and 20 m/hr of linear velocities were slightly different in head loss changes which were caused by media depth variations. The backwash experiments which were conducted in triplicate showed the reduction efficiency decreased as the time went on because of the media clogging. However, it was found that after the backwashing the reduction efficiency was increased as effective as the efficiency of the initial filtration.

Characteristics of Aquatic Environment and Algal Bloom in a Small-scaled Agricultural Reservoir (Jundae Reservoir) (소규모 농업용 전대저수지의 수환경 변화와 조류발생 특성)

  • Nam, Gui-Sook;Lee, Eui-Haeng;Kim, Mirinae;Pae, Yo-Sup;Eum, Han-Young
    • Korean Journal of Environmental Biology
    • /
    • v.31 no.4
    • /
    • pp.429-439
    • /
    • 2013
  • This study was conducted to identify the relationship between environmental factors and algal bloom, and provide information for efficient management based on the results of monitoring the environmental parameters and algal diversity in the Jundai reservoir from March 2011 to October 2013. Little change in the weather conditions was observed during the study period except for a slight decrease in rainfall. Concentration of TN and TP in the reservoir exceeded water quality standards for agriculture and significant correlation between algal growth and environmental factors was observed. Phytoplankton in Jundai reservoir included 6 classes, 40 genus, 62 species, and the phytoplankton abundance was in the range of $1.3{\times}10^4{\sim}2.8{\times}10^6$ cells $mL^{-1}$. The annual average of phytoplankton abundance and Chl-a gradually decreased as TN and TP concentrations decreased. Overall Anabaena sp., Oscillatoria sp., and Microcystis sp. were the dominant species in Jundai reservoir. As the water temperature increased, the dominant species were Anabaena sp., Microcystis sp. and Oscillatoria sp., in that order. Anabaena sp. was dominant from spring to early summer with increase in water temperature and pollutant concentrations, and high correlation with environmental factors was observed. Microcystis sp. was dominant depending on changes in the nutrient levels. In the case of Oscillatoria sp., there was no significant correlation between phytoplankton biomess and Chl-a. However, efficient management of water environment and practical control of algal bloom in small scale reservoir polluted by livestock and farm irrigation should be achieved by identification of the relationship between algal growth and environmental factors.

Debris flow characteristics and sabo dam function in urban steep slopes (도심지 급경사지에서 토석류 범람 특성 및 사방댐 기능)

  • Kim, Yeonjoong;Kim, Taewoo;Kim, Dongkyum;Yoon, Jongsung
    • Journal of Korea Water Resources Association
    • /
    • v.53 no.8
    • /
    • pp.627-636
    • /
    • 2020
  • Debris flow disasters primarily occur in mountainous terrains far from cities. As such, they have been underestimated to cause relatively less damage compared with other natural disasters. However, owing to urbanization, several residential areas and major facilities have been built in mountainous regions, and the frequency of debris flow disasters is steadily increasing owing to the increase in rainfall with environmental and climate changes. Thus, the risk of debris flow is on the rise. However, only a few studies have explored the characteristics of flooding and reduction measures for debris flow in areas designated as steep slopes. In this regard, it is necessary to conduct research on securing independent disaster prevention technology, suitable for the environment in South Korea and reflective of the topographical characteristics thereof, and update and improve disaster prevention information. Accordingly, this study aimed to calculate the amount of debris flow, depending on disaster prevention performance targets for regions designated as steep slopes in South Korea, and develop an independent model to not only evaluate the impact of debris flow but also identify debris barriers that are optimal for mitigating damage. To validate the reliability of the two-dimensional debris flow model developed for the evaluation of debris barriers, the model's performance was compared with that of the hydraulic model. Furthermore, a 2-D debris model was constructed in consideration of the regional characteristics around the steep slopes to analyze the flow characteristics of the debris that directly reaches the damaged area. The flow characteristics of the debris delivered downstream were further analyzed, depending on the specifications (height) and installation locations of the debris barriers employed to reduce the damage. The experimental results showed that the reliability of the developed model is satisfactory; further, this study confirmed significant performance degradation of debris barriers in areas where the barriers were installed at a slope of 20° or more, which is the slope at which debris flows occur.

Hydro-meteorological Effects on Water Quality Variability in Paldang Reservoir, Confluent Area of the South-Han River-North-Han River-Gyeongan Stream, Korea (남·북한강과 경안천 합류 수역 팔당호의 수질 변동성에 대한 기상·수문학적 영향)

  • Hwang, Soon-Jin;Kim, Keonhee;Park, Chaehong;Seo, Wanbum;Choi, Bong-Geun;Eum, Hyun Soo;Park, Myung-Hwan;Noh, Hye Ran;Sim, Yeon Bo;Shin, Jae-Ki
    • Korean Journal of Ecology and Environment
    • /
    • v.49 no.4
    • /
    • pp.354-374
    • /
    • 2016
  • This study explored spatiotemporal variability of water quality in correspondence with hydrometeorological factors in the five stations of Paldang Reservoir located in the Han River during 4 years from May 2012 to December 2015. Variability of basic water quality factors were largely related with seasonal fluctuations of hydrology. Temperature stratification occurred in the deep dam station, and prolonged hypoxia was observed during the draught year. Nitrogen nutrients were increased with decreasing inflow in which changing pattern of $NH_4$ reversed to $NO_3$ by the effect of treated wastewater effluent. Phosphorus increase was manifest during the period of high inflow or severe drought. Chl-a variation was reversely related with both flow change and AGP(algal growth potential) variations. Our study demonstrated that water quality variability in Paldang Reservoir was largely attributed to both natural and operational changes of inflow and outflow (including water intake) based on major pollution source of the treated wastewater (total amount of $472{\times}10^3m^3d^{-1}$) entering to the water system from watershed. In the process of water quality variability, meteorological (e.g., flood, typhoon, abnormal rainfall, scorching heat of summer) and hydrological factors (inflow and discharge) were likely to work dynamically with nutrients pulse, dilution, absorption, concentration and sedimentation. We underline comprehensive limnological study related to hydro-meteorolology to understand short- and long-term water quality variability in river-type large reservoir and suggest the necessity of P-free wastewater treatment for the effective measure of reducing pollution level of Paldang drinking water resource.

Changes in Marine Environmental Factors and Phytoplankton Community Composition Observed via Short-Term Investigation in a Harbor in the Eastern Part of the South Sea of Korea (남해동부연안항만에서 하계 단주기 조사에 따른 해양환경 및 식물플랑크톤 군집조성의 변화)

  • Lee, Minji;Baek, Seung Ho
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.23 no.6
    • /
    • pp.669-676
    • /
    • 2017
  • To understand the relationship between environmental factors and phytoplankton community structures and why early outbreaks of Cochlodinium polykrikoides occur in the inner bay of Korea, short-term investigations were conducted at 17 stations in the eastern part of the South Sea of Korea, with sessions every two weeks from July 7 to August 24, 2016. The water temperature increased from $22.3^{\circ}C$ in the first survey to $28.4^{\circ}C$ in the fourth survey, which was a rise of about $6.01^{\circ}C$. Salinity was relatively high at Stns. 8 13 in the inner bay. In the first survey, rainfall of about 150 mm was observed, so nutrients were supplied at a high level and a high concentrate of Chl. a was observed. Cryptophyta (Crpytomonas spp.) represented 58.3 % of the community, followed by Bacillariophyta at 33.8 %. In particular, at Stn. 5, Dinophyta Prorocentrum spp. accounted for a very high percentage, 32.2 %. In the second survey, low phytoplankton populations were observed, and Bacillariophyta (Chaetoceros spp.) accounted for 61.0 %. At Stn. 4, Skeletonema spp. showed high populations but did not appear at other stations even at a low density. In the third and fourth surveys, phytoplankton populations were very low. Bacillariophyta represented 78.0 % in the third study and 73.3 % in the fourth. Interestingly, although the appearance of C. polykrikoides was investigated at the beginning of the red tide in the coastal area, they were not observed inshore, implying that the likelihood of inflow by the germination of resting cysts was low for the inner bay during this study period. In addition, environmental characteristics such as salinity and nutrient presence were significantly different between sampling stations due to the existence of a semi-closed bay in the southern sea, resulting in dominant phytoplankton species and community composition differing in these short-term investigations.

Optimal Designs of Urban Watershed Boundary and Sewer Networks to Reduce Peak Outflows (첨두유출량 저감을 위한 도시유역 경계 및 우수관망 최적 설계)

  • Lee, Jung-Ho;Jun, Hwan-Don;Kim, Joong-Hoon
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.11 no.2
    • /
    • pp.157-161
    • /
    • 2011
  • Although many researches have been carried out concerning the watershed division in natural areas, it has not been researched for the urban watershed division. If the boundary between two urban areas is indistinct because no natural distinction or no administrative division is between the areas, the boundary between the urban areas that have the different outlets (multi-outlet urban watershed) is determined by only designer of sewer system. The suggested urban watershed division model (UWDM) determines the watershed boundary to reduce simultaneously the peak outflows at the outlets of each watershed. Then, the UWDM determines the sewer network to reduce the peak outflow at outlet by determining the pipe connecting directions between the manholes that have the multi-possible pipe connecting directions. In the UWDM, because the modification of the sewer network changes the superposition effect of the runoff hydrographs in sewer pipes, the optimal sewer layout can reduce the peak outflow at outlet, as much as the superposition effects of the hydrographs are reduced. Therefore, the UWDM can optimize the watershed distinction in multi-outlet urban watershed by determining the connecting directions of the boundary-manholes using the genetic algorithm. The suggested model was applied to a multi-outlet urban watershed of 50.3ha, Seoul, Korea, and the watershed division of this model, the peak outflows at two outlets were decreased by approximately 15% for the design rainfall.

The Moving Speed of Typhoons of Recent Years (2018-2020) and Changes in Total Precipitable Water Vapor Around the Korean Peninsula (최근(2018-2020) 태풍의 이동속도와 한반도 주변의 총가강수량 변화)

  • Kim, Hyo Jeong;Kim, Da Bin;Jeong, Ok Jin;Moon, Yun Seob
    • Journal of the Korean earth science society
    • /
    • v.42 no.3
    • /
    • pp.264-277
    • /
    • 2021
  • This study analyzed the relationship between the total precipitable water vapor in the atmosphere and the moving speed of recent typhoons. This study used ground observation data of air temperature, precipitation, and wind speed from the Korea Meteorological Administration (KMA) as well as total rainfall data and Red-Green-Blue (RGB) composite images from the U.S. Meteorological and Satellite Research Institute and the KMA's Cheollian Satellite 2A (GEO-KOMPSAT-2A). Using the typhoon location and moving speed data provided by the KMA, we compared the moving speeds of typhoon Bavi, Maysak, and Haishen from 2020, typhoon Tapah from 2019, and typhoon Kong-rey from 2018 with the average typhoon speed by latitude. Tapah and Kong-rey moved at average speed with changing latitude, while Bavi and Maysak showed a significant decrease in moving speed between approximately 25°N and 30°N. This is because a water vapor band in the atmosphere in front of these two typhoons induced frontogenesis and prevented their movement. In other words, when the water vapor band generated by the low-level jet causes frontogenesis in front of the moving typhoon, the high pressure area located between the site of frontogenesis and the typhoon develops further, inducing as a blocking effect. Together with the tropical night phenomenon, this slows the typhoon. Bavi and Maysak were accompanied by copious atmospheric water vapor; consequently, a water vapor band along the low-level jet induced frontogenesis. Then, the downdraft of the high pressure between the frontogenesis and the typhoon caused the tropical night phenomenon. Finally, strong winds and heavy rains occurred in succession once the typhoon landed.

Retrieval of Vegetation Health Index for the Korean Peninsula Using GK2A AMI (GK2A AMI를 이용한 한반도 식생건강지수 산출)

  • Lee, Soo-Jin;Cho, Jaeil;Ryu, Jae-Hyun;Kim, Nari;Kim, Kwangjin;Sohn, Eunha;Park, Ki-Hong;Jang, Jae-Cheol;Lee, Yangwon
    • Korean Journal of Remote Sensing
    • /
    • v.38 no.2
    • /
    • pp.179-188
    • /
    • 2022
  • Global warming causes climate change and increases extreme weather events worldwide, and the occurrence of heatwaves and droughts is also increasing in Korea. For the monitoring of extreme weather, various satellite data such as LST (Land Surface Temperature), TCI (Temperature Condition Index), NDVI (Normalized Difference Vegetation Index), VCI (Vegetation Condition Index), and VHI (Vegetation Health Index) have been used. VHI, the combination of TCI and VCI, represents the vegetation stress affected by meteorological factors like precipitation and temperature and is frequently used to assess droughts under climate change. TCI and VCI require historical reference values for the LST and NDVI for each date and location. So, it is complicated to produce the VHI from the recent satellite GK2A (Geostationary Korea Multi-Purpose Satellite-2A). This study examined the retrieval of VHI using GK2A AMI (Advanced Meteorological Imager) by referencing the historical data from VIIRS (Visible Infrared Imaging Radiometer Suite) NDVI and LST as a proxy data. We found a close relationship between GK2A and VIIRS data needed for the retrieval of VHI. We produced the TCI, VCI, and VHI for GK2A during 2020-2021 at intervals of 8 days and carried out the interpretations of recent extreme weather events in Korea. GK2A VHI could express the changes in vegetation stress in 2020 due to various extreme weather events such as heatwaves (in March and June) and low temperatures (in April and July), and heavy rainfall (in August), while NOAA (National Oceanic and Atmospheric Administration) VHI could not well represent such characteristics. The GK2A VHI presented in this study can be utilized to monitor the vegetation stress due to heatwaves and droughts if the historical reference values of LST and NDVI can be adjusted in a more statistically significant way in the future work.

The Existence and Design Intention of Jeong Seon's True-View Landscape Painting <Cheongdamdo(淸潭圖)> (겸재 정선(謙齋 鄭敾) <청담도(淸潭圖)>의 실재(實在)와 작의(作意))

  • SONG Sukho;JO Jangbin ;SIM Wookyung
    • Korean Journal of Heritage: History & Science
    • /
    • v.56 no.2
    • /
    • pp.172-203
    • /
    • 2023
  • <Cheongdamdo>(true-view landscape painting) was identified in this study to be a folding screen painting painted by Jeong Seon(a.k.a. Gyeomjae, 1676~1759) in the 32nd year of King Yeongjo(1756) while exploring the Cheongdam area located in Mt. Bukhansan near Seoul. Cheongdam Byeol-eop(Korean villa), consisting of Waunru Pavilion and Nongwolru Pavilion, was a cultural and artistic base at that time, where Nakron(Confucian political party) education took place and the Baegak Poetry Society met. <Cheongdamdo> is a painting that recalls a period of autumn rainfall in 1756 when Jeong Seon arrived in the Cheongdam valley with his disciple Kim Hee-sung(a.k.a. Bulyeomjae, 1723~1769) and met Hong Sang-han(1701~1769). It focuses on the valley flowing from Insubong peak to the village entrance. The title has a dual meaning, emphasizing "Cheongdam", a landscape feature that originated from the name of the area, while also referring to the whole scenery of the Cheongdam area. The technique of drastically brushing down(刷擦) wet pimajoon(hanging linen), the expression of soft horizontal points(米點), and the use of fine brush strokes reveal Jeong Seon's mature age. In particular, considering the contrast between the rock peak and the earthy mountain and symmetry of the numbers, the attempt to harmonize yin and yang sees it regarded as a unique Jingyeong painting(眞境術) that Jeong Seon, who was proficient in 『The Book of Changes』, presented at the final stage of his excursion. 「Cheongdamdongbugi」(Personal Anthology) of Eo Yu-bong(1673~1744) was referenced when Jeong Seon sought to understand and express the true scenery of Cheongdam and the physical properties of the main landscape features in the villa garden. The characteristics of this garden, which Jeong Seon clearly differentiated from the field, suppressed the view of water with transformed and exaggerated rocks(水口막이), elaborately creating a rain forest to cover the villa(裨補林), and adding new elements to help other landscape objects function. In addition, two trees were tilted to effectively close the garden like a gate, and an artificial mountain belt(造山帶), the boundary between the outer garden and the inner garden, was built solidly like a long fence connecting an interior azure dragon(內靑龍) and interior white tiger(內白虎). This is the Bibo-Yeomseung painting(裨補厭勝術) that Jeong Seon used to turn the poor location of the Cheongdam Byeol-eop into an auspicious site(明堂). It is interpreted as being devised to be a pungsu(feng shui) trick, and considered an iconographic embodiment of ideal traditional landscape architecture that was difficult to achieve in reality but which was possible through painting.