The 3S Basin is described as an important contributor in terms of many aspects in the Mekong River Basin in Southeast Asia. However, the 3S Basin has been suffering adverse consequences of changing discharge and sediment, which are derived from farming, deforestation, hydropower dam construction, climate change, and soil erosion. Consequently, a large population and ecology system that live along the 3S Basin are seriously affected. Accordingly, the calculating and simulating discharge and sediment become ever more urgent. There are many methods to simulate discharge and sediment. However, most of them are designed only during a single rainfall event and they require many kinds of data. Therefore, this study applied a Catchment-scale Soil Erosion model (C-SEM) to simulate discharge and sediment in the 3S Basin. The simulated results were judged with others references's data and the observed discharge of Strung Treng station, which is located in the mainstream and near the outlet of the 3S Basin. The results revealed that the 3S Basin distributes 31% of the Mekong River Basin's total discharge. In addition, the simulated sediment results at the 3S Basin's outlet also substantiated the importance of the 3S Basin to the Mekong River Basin. Furthermore, the results are also useful for the sustainable management practices in the 3S Basin, where the sediment data is unavailable.
Flood prediction is an important issue to prevent damages by flood inundation caused by increasing high-intensity rainfall with climate change. In recent years, machine learning algorithms have been receiving attention in many scientific fields including hydrology, water resources, natural hazards, etc. The performance of a machine learning algorithm was investigated to predict the water elevation of a river in this study. The aim of this study was to develop a new method for securing a large enough lead time for flood defenses by predicting river water elevation using the a long- short-term memory (LSTM) technique. The water elevation data at the Oisong gauging station were selected to evaluate its applicability. The test data were the water elevation data measured by K-water from 15 February 2013 to 26 August 2018, approximately 5 years 6 months, at 1 hour intervals. To investigate the predictability of the data in terms of the data characteristics and the lead time of the prediction data, the data were divided into the same interval data (group-A) and time average data (group-B) set. Next, the predictability was evaluated by constructing a total of 36 cases. Based on the results, group-A had a more stable water elevation prediction skill compared to group-B with a lead time from 1 to 6 h. Thus, the LSTM technique using only measured water elevation data can be used for securing the appropriate lead time for flood defense in a river.
This study applied the extended Kalman Filter, a data assimilation method, for the real-time quality improvement of runoff measurements. The state-space model of the extended Kalman Filter was composed of a rainfall-runoff model and the runoff measurement. This study divided the purpose of quality improvement of runoff measurements into two; one is to suppress the abnormally high variation of dam inflow data, and the other to amend the missing or erroneous measurements. For each case, a proper model of extended Kalman Filter was proposed, and the main difference between two models is whether only the variation is considered or both the bias and variation are considered in the estimation of covariance function. This study was applied to the Chungju Dam Basin to confirm the proposed models were effectively worked to improve the quality of both the dam inflow data and the runoff measurements with some missing and erroneous part.
Journal of The Korean Society of Agricultural Engineers
/
v.55
no.4
/
pp.55-63
/
2013
This study investigates the trends and uncertainty of the impacts of climate change on paddy rice production in the Geumho river basin. The Long Ashton Research Station stochastic Weather Generator (LARS-WG) was used to derive future climate data for the Geumho river basin from 15 General Circulation models (GCMs) for 3 Special Report on Emissions Scenarios (SRES) (A2, A1B and B1) included in the Intergovernmental Panel on Climate Change (IPCC) 4th assessment report. The Food and Agricultural Organization (FAO) AquaCrop, a water-driven crop model, was statistically calibrated for the 1982 to 2010 climate. The index of agreement (IoA), prediction efficiency ($R^2$), percent bias (PBIAS), root mean square error (RMSE) and a visual technique were used to evaluate the adjusted AquaCrop simulated yield values. The adjusted simulated yields showed RMSE, NSE, IoA and PBIAS of 0.40, 0.26, 0.76 and 0.59 respectively. The 5, 9 and 15 year central moving averages showed $R^2$ of 0.78, 0.90 and 0.96 respectively after adjustment. AquaCrop was run for the 2020s (2011-2030), 2050s (2046-2065) and 2090s (2080-2099). Climate change projections for Geumho river basin generally indicate a hotter and wetter future climate with maximum increase in the annual temperature of $4.5^{\circ}C$ in the 2090s A1B, as well as maximum increase in the rainfall of 45 % in the 2090s A2. The means (and ranges) of paddy rice yields are projected to increase by 21 % (17-25 %), 34 % (27-42 %) and 43 % (31-54 %) for the 2020s, 2050s and 2090s, respectively. The A1B shows the largest rice yield uncertainty in all time slices with standard deviation of 0.148, 0.189 and $0.173t{\cdot}ha^{-1}$ for the 2020s, 2050s and 2090s, respectively.
Journal of the Korea Institute of Information and Communication Engineering
/
v.17
no.1
/
pp.1-7
/
2013
The interference among the rain radars and interference in the adjacent wireless station due to the spurious signals from the rain radar were analyzed in this paper. The rain radar measures the rain intensity using S-band signal. The measured data are utilized in forecasting the rainfall. The interference among the rain radars or in the adjacent wireless stations may be caused by the operation with low elevation angle and the high output power. Based on the propagation analysis of S band signal and the deduced interference protection ratio of rain radar, the interference due to the rain radar are analyzed. Also, the radiation spectrum characteristics of a rain radar are deduced from the caused interference effects by the spurious signals of the rain radar. To minimize the interference effects for adjacent wireless stations, it is required to get the rejection characteristics of spurious signals above 105 dB. In viewpoints of interference for rain radars, it is necessary to operate the rain radar with a different PRF and operation time opposite to adjacent rain radars.
This study is to combine precipitation data with different spatial-temporal characteristics using an optimal weighting method. This optimal weighting method is designed for combination of AWS rain gage data and S-band RADAR-estimated rain data with weighting function in inverse proportion to own mean square error for the previous time step. To decide the optimal weight coefficient for optimized precipitation according to different training time, the method has been performed on Changma case with a long spell of rainy hour for the training time from 1 hour to 10 hours. Horizontal field of optimized precipitation tends to be smoothed after 2 hours training time, and then optimized precipitation has a good agreement with synoptic station rainfall assumed as true value. This result suggests that this optimal weighting method can be used for production of high-resolution quantitative precipitation rate using various data sets.
Proceedings of the Korea Water Resources Association Conference
/
2018.05a
/
pp.158-158
/
2018
Drought is a recurrent natural hazard in Bangladesh. It has significant impacts on agriculture, environment, and society. Well-timed information on the onset, extent, intensity, duration, and impacts of drought can mitigate the potential drought-related losses. Thus, drought characteristics need to be explained in terms of frequency, severity, and duration. This paper aims to characterize the spatial and temporal pattern of meteorological drought using EDI and illustrated drought severity over Bangladesh. Twenty-seven (27) station-based daily rainfall data for the study period of 1981-2015 were used to calculate the EDI values over Bangladesh. The evaluation of EDI is conducted for 4 sub-regions over the country to confirm the historical drought record-developed at the regional scale. The finding shows that on average, the frequency of severe to extreme drought is approximately 0.7 events per year. As a result of the regional analysis, most of the recorded historical drought events were successfully detected during the study period. Additionally, the seasonal analysis showed that the extreme droughts were frequently hit in northwestern, middle portion of the eastern and small portion of central parts of Bangladesh during the Kharif(wet) and Rabi(dry) seasons. The severe drought was affected recurrently in the central and northern regions of the country during all cropping seasons. The study also points out that the northern, south-western and central regions in Bangladesh are comparatively vulnerable to both extreme and severe drought event. The study showed that EDI would be a useful tool to identify the drought-prone area and time and potentially applicable to the climate change-induced drought evolution monitoring at regional to the national level in Bangladesh. The outcome of the present study can be used in taking anticipatory strategies to mitigate the drought damages on agricultural production as well as human sufferings in drought-prone areas of Bangladesh.
Proceedings of the Korea Water Resources Association Conference
/
2018.05a
/
pp.154-154
/
2018
To interpret the climate projections for the future as well as present, recognition of the consequences of the climate internal variability and quantification its uncertainty play a vital role. The Korean Peninsula belongs to the Far East Asian Monsoon region and its rainfall characteristics are very complex from time and space perspective. Its internal variability is expected to be large, but this variability has not been completely investigated to date especially using models of high temporal resolutions. Due to coarse spatial and temporal resolutions of General Circulation Models (GCM) projections, several studies adopted dynamic and statistical downscaling approaches to infer meterological forcing from climate change projections at local spatial scales and fine temporal resolutions. In this study, stochastic downscaling methodology was adopted to downscale daily GCM resolutions to hourly time scale using an hourly weather generator, the Advanced WEather GENerator (AWE-GEN). After extracting factors of change from the GCM realizations, these were applied to the climatic statistics inferred from historical observations to re-evaluate parameters of the weather generator. The re-parameterized generator yields hourly time series which can be considered to be representative of future climate conditions. Further, 30 ensemble members of hourly precipitation were generated for each selected station to quantify uncertainty. Spatial map was generated to visualize as separated zones formed through K-means cluster algorithm which region is more inconsistent as compared to the climatological norm or in which region the probability of occurrence of the extremes event is high. The results showed that the stations located near the coastal regions are more uncertain as compared to inland regions. Such information will be ultimately helpful for planning future adaptation and mitigation measures against extreme events.
Journal of The Korean Society of Agricultural Engineers
/
v.63
no.5
/
pp.1-11
/
2021
Soil moisture plays a critical role in hydrological processes, land-atmosphere interactions and climate variability. It can limit vegetation growth as well as infiltration of rainfall and therefore very important for agriculture sector and food protection. Recently, due to the increased damage from drought caused by climate change, there is a frequent occurrence of shortage of agricultural water, making it difficult to supply and manage stable agricultural water. Efficient water management is necessary to reduce drought damage, and soil moisture management is important in case of upland crops. In this study, soil moisture was calculated based on the water balance model, and the suitability of soil moisture data was verified through the application. The regional soil moisture was calculated based on the meteorological data collected by the meteorological station, and applied the Runs theory. We analyzed the spatiotemporal variability of soil moisture and drought impacts, and analyzed the correlation between actual drought impacts and drought damage through correlation analysis of Standardized Precipitation Index (SPI). The soil moisture steadily decreased and increased until the rainy season, while the drought size steadily increased and decreased until the rainy season. The regional magnitude of the drought was large in Gyeonggi-do and Gyeongsang-do, and in winter, severe drought occurred in areas of Gangwon-do. As a result of comparative analysis with actual drought events, it was confirmed that there is a high correlation with SPI by each time scale drought events with a correlation coefficient.
Journal of the Korea Academia-Industrial cooperation Society
/
v.22
no.4
/
pp.287-294
/
2021
A Python-based LSTM model was constructed using a Tensorflow backend to estimate the amount of outflow during floods in the Gokgyo-cheon basin flowing into the Sapgyo Lake. To understand the effects of the length of input data used for learning, i.e., the sequence length, on the performance of the model, the model was implemented by increasing the sequence length to three, five, and seven hours. Consequently, when the sequence length was three hours, the prediction performance was excellent over the entire period. As a result of predicting three extreme rainfall events in the model verification, it was confirmed that an average NSE of 0.96 or higher was obtained for one hour in the leading time, and the accuracy decreased gradually for more than two hours in the leading time. In conclusion, the flood level at the Gangcheong station of Gokgyo-cheon can be predicted with high accuracy if the prediction is performed for one hour of leading time with a sequence length of three hours.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.