• Title/Summary/Keyword: Rain intensity

Search Result 203, Processing Time 0.024 seconds

A Study on the Effect of Ground-based GPS Data Assimilation into Very-short-range Prediction Model (초단기 예측모델에서 지상 GPS 자료동화의 영향 연구)

  • Kim, Eun-Hee;Ahn, Kwang-Deuk;Lee, Hee-Choon;Ha, Jong-Chul;Lim, Eunha
    • Atmosphere
    • /
    • v.25 no.4
    • /
    • pp.623-637
    • /
    • 2015
  • The accurate analysis of water vapor in initial of numerical weather prediction (NWP) model is required as one of the necessary conditions for the improvement of heavy rainfall prediction and reduction of spin-up time on a very-short-range forecast. To study this effect, the impact of a ground-based Global Positioning System (GPS)-Precipitable Water Vapor (PWV) on very-short-range forecast are examined. Data assimilation experiments of GPS-PWV data from 19 sites over the Korean Peninsula were conducted with Advanced Storm-scale Analysis and Prediction System (ASAPS) based on the Korea Meteorological Administration's Korea Local Analysis and Prediction System (KLAPS) included "Hot Start" as very-short-range forecast system. The GPS total water vapor was used as constraint for integrated water vapor in a variational humidity analysis in KLAPS. Two simulations of heavy rainfall events show that the precipitation forecast have improved in terms of ETS score compared to the simulation without GPS-PWV data. In the first case, the ETS for 0.5 mm of rainfall accumulated during 3 hrs over the Seoul-Gyeonggi area shows an improvement of 0.059 for initial forecast time. In other cases, the ETS improved 0.082 for late forecast time. According to a qualitative analysis, the assimilation of GPS-PWV improved on the intensity of precipitation in the strong rain band, and reduced overestimated small amounts of precipitation on the out of rain band. In the case of heavy rainfall during the rainy season in Gyeonggi province, 8 mm accompanied by the typhoon in the case was shown to increase to 15 mm of precipitation in the southern metropolitan area. The GPS-PWV assimilation was extremely beneficial to improving the initial moisture analysis and heavy rainfall forecast within 3 hrs. The GPS-PWV data on variational data assimilation have provided more useful information to improve the predictability of precipitation for very short range forecasts.

Measure Improvement on Vulnerable Area based on Climate Change Impact on Agriculture Infrastructure (기후변화에 따른 농업생산기반시설 영향분석을 통한 정책추진 방안 연구)

  • Jeong, Kyung-Hun;Song, Suk-Ho;Jung, Hyoung-Mo;Oh, Seung-Heon;Kim, Soo-Jin;Lim, Se-Yun;Joo, Dong-Hyuk;Hwang, Syewoon;Jang, Min-Won;Bae, Seung-Jong;Yoo, Seung-Hwan
    • Journal of Korean Society of Rural Planning
    • /
    • v.26 no.4
    • /
    • pp.81-91
    • /
    • 2020
  • This study was conducted to analyse climate change impact on agriculture infrastructure and propose improved measures on vulnerable areas. Recently, Climate change has resulted in damaging effects on agricultural fields through increases in drought intensity and flood risk. It is expected that this impact will increase over time. This study shows that Gyeong-gi and Chung-nam provinces are affected by drought and Gyeong-buk and Gyeong-nam provinces are affected by heavy rain. However, there are also regional variations within each province. Agricultural infrastructure affected by drought may also be affected by heavy rain. Increased damages on the infrastructure due to increased extreme weather events require preventive measures especially in vulnerable areas. In order to minimize the damage by climate change, we need to introduce a reform in the system which selects project region by analysing climate change impacts. Furthermore, impact assessment of climate change from projects such as 'water supply diversification', 'flooded farmland improvement', and 'irrigation facility reinforcement' also need to be adopted to improve the measures. The results of this study are expected to provide a foundation for establishing measures on coping with climate change in the agricultural sector.

Review of Parameter Estimation Procedure of Freund Bivariate Exponential Distribution (Freund 이변량 지수분포의 매개변수 추정과정 검토)

  • Park, Cheol-Soon;Yoo, Chul-Sang
    • Journal of Korea Water Resources Association
    • /
    • v.45 no.2
    • /
    • pp.191-201
    • /
    • 2012
  • This study reviewed the parameter estimation procedure of the Freund bivariate exponential distribution for the decision of the annual maximum rainfall event. The method of moments was reviewed first, whose results were compared with those from the method of maximum likelihood. Both methods were applied to the hourly rainfall data of the Seoul rain gauge station measured from 1961 to 2010 to select the annual maximum rainfall events, which were also compared each other. The results derived are as follows. First, when applying the method of moments for the parameter estimation, it was found necessary to consider the correlation coefficient between the two variables as well as the mean and variance. Second, the method of maximum likelihood was better to reproduce the mean, but the method of moments was better to reproduce the annual variation of the variance. Third, The annual maximum rainfall events derived were very similar in both cases. Among differently selected annual maximum rainfall events, those with the higher rainfall amount were selected by the method of maximum likelihood, but those with the higher rainfall intensity by the method of moments.

Evaluation of Erosivity Index (EI) in Calculation of R Factor for the RUSLE

  • Kim, Hye-Jin;Song, Jin-A;Lim, You-Jin;Chung, Doug-Young
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.45 no.1
    • /
    • pp.112-117
    • /
    • 2012
  • The Revised Universal Soil Loss Equation (RUSLE) is a revision of the Universal Soil Loss Equation (USLE). However, changes for each factor of the USLE have been made in RUSLE which can be used to compute soil loss on areas only where significant overland flow occurs. RUSLE which requires standardized methods to satisfy new data requirements estimates soil movement at a particular site by utilizing the same factorial approach employed by the USLE. The rainfall erosivity in the RUSLE expressed through the R-factor to quantify the effect of raindrop impact and to reflect the amount and rate of runoff likely is associated with the rain. Calculating the R-factor value in the RUSLE equation to predict the related soil loss may be possible to analyse the variability of rainfall erosivity with long time-series of concerned rainfall data. However, daily time step models cannot return proper estimates when run on other specific rainfall patters such as storm and daily cumulative precipitation. Therefore, it is desirable that cross-checking is carried out amongst different time-aggregations typical rainfall event may cause error in estimating the potential soil loss in definite conditions.

A Study on the Comparison of Chemical Components in Rainwater at Coastal and Metropolitan areas (해안지역과 도시지역 강수의 화학적 성상에 관한 연구)

  • 강공언;강병욱;김희강
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.8 no.3
    • /
    • pp.191-197
    • /
    • 1992
  • In order to investigate the chemical components of acid precipitation at Kangwha near the Yellow Sea and Seoul in Korea, the precipitation samples were collected by wetonly precipitation sampler from February 1991 to January 1992, and pH, electric conductivity(E. C.) and major water-soluble ionic components were analyzed. Strong negative linear correlations were observed between the rainfall amount and the sum of major ionic components in $\mu eq/\ell$ at two sites. The sum of major ionic components also correlated negatively with rain intensity. The analytical results of precipitation samples at two sites were compared each other. Average values of volume-weighted pH were found to be 5.21 at Kangwha and 5.09 at Seoul. The cationic abundance($\mu eq/\ell$) in rainwater showed the general trend $NH_4^+ > Na^+ > Ca^{2+} > Mg^{2-+} > H^+ > K^+$ at Kangwah and $NH_4^+ > Ca^{2+} > Na^+ > H^+ > Mg^{2+} > K^+$ at Seoul. The anionic abundance showed the general trend $SO_4^{2-} > Cl^- > NO_3^-$ at Kangwha and $SO_4^{2-} > NO_3^- > Cl^-$ at Seoul. The concentrations of seasalt such as $Na^+ and Cl^-$ were higher at Kangwha than Seoul. The concentrations of $nss-SO_4^{2-}, nss-Cl^- and NO_3^-$ which are acid composition were higher at Seoul(96.3 $\mu eq/\ell$) than Kangwha(69.0 $\mu eq/\ell$). The contribution of seasalt to the composition of precipitation were higher at Kangwha(34.1%) than Seoul(15.7%). Ammonia and calcium species in rainwater at Kangwha and Seoul are interpreted to have 91% of neutralizing capacity of the original sulfuric and nitric acids. Provided that the precipitation acidity originates primarily from sulfate and nitrate, sulfate was found to contribute about 73-75% of the free precipitation acidity.

  • PDF

Recognition of characters on car number plate and best recognition ratio among their layers using Multi-layer Perceptron (다중퍼셉트론을 이용한 자동차 번호판의 최적 입출력 노드의 비율 결정에 관한 연구)

  • Lee, Eui-Chul;Lee, Wang-Heon
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.11 no.1
    • /
    • pp.73-80
    • /
    • 2016
  • The Car License Plate Recognition(: CLPR) is required in searching the hit-and-run car, measuring the traffic density, investigating the traffic accidents as well as in pursuing vehicle crimes according to the increasing in number of vehicles. The captured images on the real environment of the CLPR is contaminated not only by snow and rain, illumination changes, but also by the geometrical distortion due to the pose changes between camera and car at the moment of image capturing. We propose homographic transformation and intensity histogram of vertical image projection so as to transform the distorted input to the original image and cluster the character and number, respectively. Especially, in this paper, the Multilayer Perceptron Algorithm(: MLP) in the CLPR is used to not only recognize the charcters and car license plate, but also determine the optimized ratio among the number of input, hidden and output layers by the real experimental result.

Effect of Turfgrasses to Prevent Soil Erosion (잔디류가 토양유실 방지에 미치는 영향)

  • Ahn, Byung-Goo;Choi, Joon-Soo
    • Weed & Turfgrass Science
    • /
    • v.2 no.4
    • /
    • pp.381-386
    • /
    • 2013
  • Recent climatic changes by global warming include increased amount and intensity of rainfall. This study was conducted to find out possible roles of turfgrasses to reduce the impact of climatic changes, especially surface soil erosion. Soil erosions by intensive rain were measured after each significant precipitation from the artificially sloped plots of zoysiagrass, cool-season grass mixture of Kentucky bluegrass and perennial ryegrass and other typical korean summer crops. Sodded zoysiagrass resulted in minimal annual soil erosion followed by strip-sodded zoysiagrass and cool-season turfgrass mixture while dry-field rice and bean cultivations eroded the surface soils of 5 to 10 MT $ha^{-1}yr^{-1}$ and pepper cultivation resulted in 7 to 14 MT $ha^{-1}yr^{-1}$ annual loss of surface soil. Annual loss of surface soil from bare land with hand weeding was up to 18 MT $ha^{-1}yr^{-1}$ while greatly reduced soil erosion was observed from weed grown treatment.

Characteristics of Urban Meteorology in Seoul Metropolitan Area of Korea (수도권 지역의 도시 기상 특성)

  • Kim, Yeon-Hee;Choi, Da-Young;Chang, Dong-Eon
    • Atmosphere
    • /
    • v.21 no.3
    • /
    • pp.257-271
    • /
    • 2011
  • The aim of this study is to examine weather modification by urbanization and human activities. The characteristics of the urban heat island (UHI) and precipitation in Seoul metropolitan area of Korea are investigated to demonstrate that cities can change or modify local and nearby weather and climate, and to confirm that cities can initiate convection, change the behavior of convective precipitation, and enhance downstream precipitation. The data used in this study are surface meteorological station data observed in Seoul and its nearby 5 cities for the period of 1960 to 2009, and 162 Automatic Weather System stations data observed in the Seoul metropolitan area from 1998 to 2009. Air temperature and precipitation amount tend to increase with time, and relative humidity decreases because of urbanization. Similar to previous studies for other cities, the average maximum UHI is weakest in summer and is strong in autumn and winter, and the maximum UHI intensity is more frequently observed in the nighttime than in the daytime, decreases with increasing wind speed, and is enhanced for clear skies. Relatively warm regions extend in the east-west direction and relatively cold regions are located near the northern and southern mountains inside Seoul. The satellite cities in the outskirts of Seoul have been rapidly built up in recent years, thus exhibiting increases in near-surface air temperature. The yearly precipitation amount during the last 50 years is increased with time but rainy days are decreased. The heavy rainfall events of more than $20mm\;hr^{-1}$ increases with time. The substantial changes observed in precipitation in Seoul seem to be linked with the accelerated increase in the urban sprawl in recent decades which in turn has induced an intensification of the UHI effect and enhanced downstream precipitation. We also found that the frequency of intense rain showers has increased in Seoul metropolitan area.

Evaluation for Non-Point Sources Reduction Effect by Vegetated Ridge and Silt Fence (식생밭두렁과 실트펜스를 이용한 밭 비점오염 저감효과 평가)

  • Kim, Dong-Hyeon;Kim, Sang-Min
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.57 no.5
    • /
    • pp.129-137
    • /
    • 2015
  • The objective of this study was to test the non-point source pollution (NPS) control by the vegetated ridge and silt fence through field monitoring. The experiment plots were established with three sizes which are 5 m width by 22 m length with 8 %, 3 % slope and 15m width by 15 m length with 6 % slope. Flumes with the floating type stage gages were installed at the outlet of each plot to monitor the runoff. For a rainfall monitoring, tipping bucket rain gage was installed within the experiment site. Water quality samples were monitored during the heavy rainfall occurred. The amount of rainfall from 4 monitored events ranged from 27.6 mm to 130 mm. The runoff reduction rate could vary depending on slope, soil, crop growth condition, rainfall amount, rainfall intensity, antecedent moisture condition, and many other factors. The runoff from vegetated ridge and silt fence treatment plots was 24.05 % and -8.28 % lower than that from control plot, respectively. The monitoring results showed that the average pollution loads reduced by vegetated ridge compared to control were BOD 36.62~53.60 %, SS 40.41~73.71 %, COD 39.34~56.41 %, DOC 49.08~53.67 %, TN 26.74~67.23 %, and TP 52.72~91.80 %; by silt fence compared to control were SS 41.73 %, COD 1.93 %, and TN 2.38 %. The paired t-test result indicated that the vegetated ridge and silt fence were statistically significant effect in SS load reduction, with a 5 % significant level. Monitored results indicated that vegetated ridge and silt fence were both effective to reduce the pollutant from the field surface runoff.

Prediction of Landslides Occurrence Probability under Climate Change using MaxEnt Model (MaxEnt 모형을 이용한 기후변화에 따른 산사태 발생가능성 예측)

  • Kim, Hogul;Lee, Dong-Kun;Mo, Yongwon;Kil, Sungho;Park, Chan;Lee, Soojae
    • Journal of Environmental Impact Assessment
    • /
    • v.22 no.1
    • /
    • pp.39-50
    • /
    • 2013
  • Occurrence of landslides has been increasing due to extreme weather events(e.g. heavy rainfall, torrential rains) by climate change. Pyeongchang, Korea had seriously been damaged by landslides caused by a typhoon, Ewiniar in 2006. Moreover, the frequency and intensity of landslides are increasing in summer due to torrential rain. Therefore, risk assessment and adaptation measure is urgently needed to build resilience. To support landslide adaptation measures, this study predicted landslides occurrence using MaxEnt model and suggested susceptibility map of landslides. Precipitation data of RCP 8.5 Climate change scenarios were used to analyze an impact of increase in rainfall in the future. In 2050 and 2090, the probability of landslides occurrence was predicted to increase. These were due to an increase in heavy rainfall and cumulative rainfall. As a result of analysis, factors that has major impact on landslide appeared to be climate factors, prediction accuracy of the model was very high(92%). In the future Pyeongchang will have serious rainfall compare to 2006 and more intense landslides area expected to increase. This study will help to establish adaptation measure against landslides due to heavy rainfall.