• Title/Summary/Keyword: Rain events

Search Result 202, Processing Time 0.021 seconds

Impacts of Abnormal Weather Factors on Rice Production (패널분석-확률효과모형에 의한 등숙기 이상기상이 쌀 단수에 미치는 영향 분석)

  • Jeong, Hak-Kyun;Kim, Chang-Gil;Moon, Dong-Hyun
    • Journal of Climate Change Research
    • /
    • v.4 no.4
    • /
    • pp.317-330
    • /
    • 2013
  • The yield of rice production is affected severely by abnormal weather events, such as flood, drought, high temperature etc. The objective of this paper is to assess impacts of abnormal weather events on rice production, using a panel model which analyzes both cross-section data and ti- me series data. Abnormal weather is defined as the weather event which goes beyond the range of ${\pm}2{\sigma}$ from the average of a weather factor. The result of an analysis on impacts of high temperature on rice production showed that the yield of rice was decreased 5.8% to 16.3% under the conditions of extremely high temperature, and it was decreased 8.8 to 20.8% under the conditions of both extremely high and heavy rain. Adaptation strategies, development of new varieties enduring high temperature and heavy rain, adaptation of crop insurance, modernization of irrigation facilities are needed to minimize the impacts of abnormal weather on rice production, and to stabilize farmers' income.

A Study on Special Quality of Hourly Precipitation of Typhoon happened in Korea (우리나라에 발생한 태풍의 시간 강우량 특성에 관한 연구)

  • Oh, Tae-Suk;Ahn, Jae-Hyun;Moon, Young-Il
    • Journal of Korea Water Resources Association
    • /
    • v.40 no.9
    • /
    • pp.709-722
    • /
    • 2007
  • The floods of Korea happens periodically during summer. The cause of heavy rain that provokes floods can be classified into typhoon and localized downpour. The typhoon happens in the tropical region. It causes one of the worst damage to Korea by extreme rainfall and strong wind. Usually, it is known that the flood damage by the typhoon is larger than that by the localized downpour. Therefore, this study classified rainfall events into typhoon events and localized downpour events based on the cause. Through statistical analyses of the rainfall data, this study investigated special quality of the rainfall during the time of typhoon. In analysis results, probability Precipitation calculated by the typhoon events were exposed bigger than that calculated by all rainfall events.

Applicability evaluation of radar-based sudden downpour risk prediction technique for flash flood disaster in a mountainous area (산지지역 수재해 대응을 위한 레이더 기반 돌발성 호우 위험성 사전 탐지 기술 적용성 평가)

  • Yoon, Seongsim;Son, Kyung-Hwan
    • Journal of Korea Water Resources Association
    • /
    • v.53 no.4
    • /
    • pp.313-322
    • /
    • 2020
  • There is always a risk of water disasters due to sudden storms in mountainous regions in Korea, which is more than 70% of the country's land. In this study, a radar-based risk prediction technique for sudden downpour is applied in the mountainous region and is evaluated for its applicability using Mt. Biseul rain radar. Eight local heavy rain events in mountain regions are selected and the information was calculated such as early detection of cumulonimbus convective cells, automatic detection of convective cells, and risk index of detected convective cells using the three-dimensional radar reflectivity, rainfall intensity, and doppler wind speed. As a result, it was possible to confirm the initial detection timing and location of convective cells that may develop as a localized heavy rain, and the magnitude and location of the risk determined according to whether or not vortices were generated. In particular, it was confirmed that the ground rain gauge network has limitations in detecting heavy rains that develop locally in a narrow area. Besides, it is possible to secure a time of at least 10 minutes to a maximum of 65 minutes until the maximum rainfall intensity occurs at the time of obtaining the risk information. Therefore, it would be useful as information to prevent flash flooding disaster and marooned accidents caused by heavy rain in the mountainous area using this technique.

Development of a method to create a matrix of heavy rain damage rating standards using rainfall and heavy rain damage data (강우량 및 호우피해 자료를 이용한 호우피해 등급기준 Matrix작성 기법 개발)

  • Jeung, Se Jin;Yoo, Jae Eun;Hur, Dasom;Jung, Seung Kwon
    • Journal of Korea Water Resources Association
    • /
    • v.56 no.2
    • /
    • pp.115-124
    • /
    • 2023
  • Currently, as the frequency of extreme weather events increases, the scale of damage increases when extreme weather events occur. This has been providing forecast information by investing a lot of time and resources to predict rainfall from the past. However, this information is difficult for non-experts to understand, and it does not include information on how much damage occurs when extreme weather events occur. Therefore, in this study, a risk matrix based on heavy rain damage rating was presented by using the impact forecasting standard through the creation of a risk matrix presented for the first time in the UK. First, through correlation analysis between rainfall data and damage data, variables necessary for risk matrix creation are selected, and PERCENTILE (25%, 75%, 90%, 95%) and JNBC (Jenks Natural Breaks Classification) techniques suggested in previous studies are used. Therefore, a rating standard according to rainfall and damage was calculated, and two rating standards were synthesized to present one standard. As a result of the analysis, in the case of the number of households affected by the disaster, PERCENTILE showed the highest distribution than JNBC in the Yeongsan River and Seomjin River basins where the most damage occurred, and similar results were shown in the Chungcheong-do area. Looking at the results of rainfall grading, JNBC's grade was higher than PERCENTILE's, and the highest grade was shown especially in Jeolla-do and Chungcheong-do. In addition, when comparing with the current status of heavy rain warnings in the affected area, it can be confirmed that JNBC is similar. In the risk matrix results, it was confirmed that JNBC replicated better than PERCENTILE in Sejong, Daejeon, Chungnam, Chungbuk, Gwangju, Jeonnam, and Jeonbuk regions, which suffered the most damage.

Hydrochemical Characteristics and Changes by Rainfall in the Jungrang River (강우에 의한 중랑천의 수질 특성 변화 연구)

  • Kim, Youn-Tae;Kim, Yu Lee;Woo, Nam-Chil;Hyun, Seung Gyu
    • Journal of Korean Society on Water Environment
    • /
    • v.22 no.4
    • /
    • pp.666-671
    • /
    • 2006
  • Effects of a rainfall event (July 28, 2005) on the hydrochemical characteristics of the Jungrang river, the biggest tributary of the Han river, was investigated. Significant spatial variations in the hydrochemical characteristics were observed. At JR2 location, concentrations of T-N and T-P were relatively low indicating occurrence of active oxidation in the stepped drop structure. At JR3 location, concentrations of Na, K, Cl, $NH_4-N$ and EC were elevated suggesting increased discharge from the nearby waste-water treatment plant and tributaries. The rain event diluted major dissolved ion concentrations in the river by 12~52%. The $NO_3-N$ levels were preserved during the rain then increased about twofold after rainfall, suggesting increased discharge of nitrate-contaminated groundwater. Heavy metals including Cd, Co, Cr, Cu and Pb were not detected in all water samples and the leachates from surface sediment samples. Concentrations of Fe, Mn, Al and Zn were below the Korean Drinking Water Guideline. Results of this study suggested that establishment of water-quality monitoring protocols describing temporal and spatial variations in parameters sensitive to rainfall events, relatively steady factors, and contaminant sources is required.

Assessing Vulnerability to Climate Change of the Physical Infrastructure in Korea Through a Survey of Professionals (우리나라 사회기반시설의 기후변화 취약성 평가 - 전문가 설문조사를 바탕으로 -)

  • Myeong, Soojeong;Yi, Donggyu
    • Journal of Environmental Impact Assessment
    • /
    • v.18 no.6
    • /
    • pp.347-357
    • /
    • 2009
  • This study conducted a vulnerability assessment on Korea's physical infrastructure to provide base data for developing strategies to strengthen Korea's ability to adapt to climate change. The assessment was conducted by surveying professionals in the field of infrastructure and climate change science. A vulnerability assessment was carried out for seven climate change events: average temperature increases, sea level rise, typhoons and storm surges, floods and heavy rain, drought, severe cold, and heat waves. The survey asked respondents questions with respect to the consequences of each climate change event, the urgency of adaptation to climate change, and the scale of investment for adaptation to each climate change event. Thereafter, management priorities for infrastructure were devised and implications for policy development were suggested. The results showed that respondents expected the possibility of "typhoons and storm surges" and "floods and heavy rain" to be the most high. Respondents indicated that infrastructure related to water, transportation, and the built environment were more vulnerable to climate change. The most vulnerable facilities included river related facilities such as dams and riverbanks in the "water" category and seaports and roads in the "transport and communication" category. The results found were consistent with the history of natural disasters in Korea.

Review on Environmental Impact Assessment and Adaptation Strategies for Climate Change (기후변화에 따른 적응대책과 환경영향평가)

  • Choi, Kwang-Ho
    • Journal of Environmental Impact Assessment
    • /
    • v.20 no.2
    • /
    • pp.249-256
    • /
    • 2011
  • Causing by green house gas emission, global warming is being accelerated significantly. This global warming cause world climate to change quiet different than before and we call this phenomenon is Climate Change. Environmental Impact Assessment being implemented in Korea is to prevent predicted environmental impacts from deteriorating within the domestic information and situation. As the climate change is getting severe, new meteorological records can be occurred which is exceeded existing statistical data. According to KMA(Korea Meteorological Administration) data, maximum value of precipitation and temperature in many regions changed with new data within last decade. And these events accompanied with landslides and flooding, and these also affected on water quality in rivers and lakes. According to impacts by climate change, disasters and accidents from heavy rain are the most apprehensive parts. And water pollution caused by overflowed non-point sources during heavy rain fall, fugitive dust caused by long-term drought, and sea level rise and Tsunami may affect on seaside industrial complex should be worth consideration. In this review, necessity of mutual consideration with influences of climate change was considered adding on existing guideline.

Analysis of Flooding Variation and Flood Inundation According to Increasing Rainfall (강우량 증가에 따른 홍수량 변동 및 홍수범람 분석)

  • Kang, Bo-Seong;Yang, Sung-Kee;Jung, Woo-Yeol
    • Journal of Environmental Science International
    • /
    • v.24 no.4
    • /
    • pp.415-424
    • /
    • 2015
  • As global warming has accelerated to weather in recent years, and The frequent floods are creating heavy rains and typhoons followed by considerable damage in Jeju. This study estimated design flood discharges and flood stage in Jeju, considering climate change in connection with RCP scenario, the 5th IPCC Report recently published. It also analyzed the period which might be subject to the risk of flooding in downstream of Oedo Stream. As a result, it has analyzed that there might be a risk of flooding when there were 80 years or more rainfall events in 35 years that rainfall would have increased by 10%, 69 years that 100 years or more heavy rain and rainfall would have increased by 20%, and 104 years that 100 years or more heavy rain and rainfall would have increased by 20%. It is expected that this study results of rainfall increasing trend caused by climate change will be helpful to minimize the damage of floods which will secure the future of Jeju.

A Study on the Improvement in Local Gauge Correction Method (국지 우량계 보정 방법의 개선에 관한 연구)

  • Kim, Kwang-Ho;Kim, Min-Seong;Seo, Seong-Woon;Kim, Park-Sa;Kang, Dong-Hwan;Kwon, Byung-Hyuk
    • Journal of Environmental Science International
    • /
    • v.24 no.4
    • /
    • pp.525-540
    • /
    • 2015
  • Spatial distribution of precipitation has been estimated based on the local gauge correction (LGC) with a fixed inverse distance weighting (IDW), which is not optimized in taking effective radius into account depending on the radar error. We developed an algorithm, improved local gauge correction (ILGC) which eliminates outlier in radar rainrate errors and optimize distance power for IDW. ILGC was statistically examined the hourly cumulated precipitation from weather for the heavy rain events. Adjusted radar rainfall from ILGC is improved to 50% compared with unadjusted radar rainfall. The accuracy of ILGC is higher to 7% than that of LGC, which resulted from a positive effect of the optimal algorithm on the adjustment of quantitative precipitation estimation from weather radar.

Comparative Study of the Storm Centered Areal Reduction Factors by Storm Types (호우 형태에 따른 호우중심형 면적감소계수 비교)

  • Lee, Dongjoo;Hyun, Sukhoon;Kang, Boosik
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.35 no.6
    • /
    • pp.1219-1228
    • /
    • 2015
  • The Fixed Area ARFs (Area Reduction Factors) method has limitations in providing exact information about spatial distribution due to the lack of enough density of rain gauge stations. In this study the storm-centered ARF was evaluated between frontal and typhoon storm events utilizing radar precipitation. In estimating storm-centered ARFs, in order to consider the horizontal advection, direction, and spatial distribution of rain cells, the rotational angle of rainfall of each rainfall event and the optimum areal rainfall within the spatial rain cell envelope was taken into account. Compared with the frontal storm, the ARF of typhoon storm shows narrow range of variability. It is noted that the ARFs of frontal storm increases with the rainfall duration, but those of typhoon storm shows opposite pattern. As a result the typhoon ARFs appear greater than frontal ARFs for 1~3 hours of duration, but less for more than 6 hours of duration.