• Title/Summary/Keyword: Rain Sensor

Search Result 77, Processing Time 0.024 seconds

Automatic Landing System using a Trajectory of Laser Beam (레이저 빔 궤적을 이용한 자동 랜딩 시스템)

  • Hwang, Jin-Ah;Nam, Gi-Gun;Lee, Jang-Myung
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.13 no.1
    • /
    • pp.39-45
    • /
    • 2007
  • This paper proposes a method of container position measurement using automatic landing system that is estimated by a laser range finder. In the most of container position measurement methods, CCD cameras or laser scanners have been used to get the source data. However those sensors are not only weak for disturbances, for examples, the light, fog, and rain, but also the system cost is high. When the spreader arrives at the goal position, it is still swung by inertia or by wind effect. In this paper, the spreader swung data have been used to find the container position. The laser range finder is equipped in the front side of spreader. It can measure distance and relative position between spreader and container. This laser range finder can be rotated as desired by a motor. And a tilt sensor is equipped on the spreader to measure spreader sway. The relative position information between the spreader and a container using the laser range finder and tilt sensor is estimated through the geometrical analysis.

Development of Automatic Tracking Control Algorithm for Efficiency Improvement of PV Generation (태양광 발전의 효율 향상을 위한 자동추적 제어 알고리즘 개발)

  • Choi, Jung-Sik;Ko, Jae-Sub;Chung, Dong-Hwa
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.59 no.10
    • /
    • pp.1823-1831
    • /
    • 2010
  • This paper proposes an automatic tracking control algorithm for efficiency improvement of photovoltaic generation. Increasing the power of PV systems should improve the efficiency of solar cells or the power condition system. The normal alignment of the PV module always have to run perpendicular to the sun's rays. The solar tracking system, able to improve the efficiency of the PV system, was initiated by applying that to the PV power plant. The tracking system of conventional PV power plant has been studied with regard to the tracking accuracy of the solar cells. Power generation efficiency were increased by aligning the cells for maximum exposure to the sun's rays. Using a perpendicular position facilitated optimum condition. However, there is a problem about the reliability of tracking systems unable to not track the sun correctly during environmental variations. Therefore, a novel control algorithm needs to improve the generation efficiency of the PV systems and reduce the loss of generation. This control algorithm is the proposed automatic tracking algorithm in this paper. Automatic tracking control is combined the sensor and program method for robust control in environment changing condition. This tracking system includes the insolation, rain sensor and anemometer for climate environment changing. Proposed algorithm in this paper, is compared to performance of conventional tracking control algorithm in variative insolation condition. And prove the validity of proposed algorithm through the experimental data.

Fabrication and characteristics of NOx gas sensors using WO3 and In2O3 thick films to monitor air pollution

  • Son, M.W.;Choi, J.B.;Hwang, H.I.;Yoo, K.S.
    • Journal of Sensor Science and Technology
    • /
    • v.18 no.4
    • /
    • pp.263-268
    • /
    • 2009
  • With the increasing number of automobiles, the problem of air pollution from the exhaust gases of automobiles has become a critical issue. The principal gases that cause air pollution are nitrogen oxide or NO$_x$(NO and NO$_2$), and CO. Because NO$_x$ gases cause acid rain and global warming and produce ozone(O$_3$) that leads to serious metropolitan smog from photochemical reaction, they must be detected and reduced. Mixtures of WO$_3$ and $In_2O_3$(WO$_3$:$In_2O_3$=10:0, 7:3, 5:5, 3:7, and 0:10 in wt.%), which are NO$_x$ gas-sensing materials, were prepared, and thick-film gas sensors that included a heater and a temperature sensor were fabricated. Their sensitivity to NO$_x$ was measured at 250$\sim$400$^{\circ}C$ for NO$_x$ concentrations of 1$\sim$5 ppm. The $In_2O_3$ thick-film sensor showed excellent sensitivity($R_{gas}/R_{air}$=10.22) at 300$^{\circ}C$ to 5-ppm NO. The response time for 70 % saturated sensitivity was about 3 seconds, and the sensors exhibited very fast reactivity to NO$_x$.

Object detection and distance measurement system with sensor fusion (센서 융합을 통한 물체 거리 측정 및 인식 시스템)

  • Lee, Tae-Min;Kim, Jung-Hwan;Lim, Joonhong
    • Journal of IKEEE
    • /
    • v.24 no.1
    • /
    • pp.232-237
    • /
    • 2020
  • In this paper, we propose an efficient sensor fusion method for autonomous vehicle recognition and distance measurement. Typical sensors used in autonomous vehicles are radar, lidar and camera. Among these, the lidar sensor is used to create a map around the vehicle. This has the disadvantage, however, of poor performance in weather conditions and the high cost of the sensor. In this paper, to compensate for these shortcomings, the distance is measured with a radar sensor that is relatively inexpensive and free of snow, rain and fog. The camera sensor with excellent object recognition rate is fused to measure object distance. The converged video is transmitted to a smartphone in real time through an IP server and can be used for an autonomous driving assistance system that determines the current vehicle situation from inside and outside.

NOx Gas Detecting Properties of the Nitrocellulose/MWCNT Thin Film Coated on the Glass Substrate (유리 기판 위에 제작된 Nitrocellulose/MWCNT 박막의 질소가스 검출특성)

  • Lee, Won Jae;Choi, Myung Kyu;Jang, Kyung Uk
    • Journal of the Semiconductor & Display Technology
    • /
    • v.11 no.1
    • /
    • pp.55-59
    • /
    • 2012
  • NOx is one of the toxin gases, which is mainly causing the optic-chemical smog phenomena, and decreasing in the function of nose and taste. Especially, NO is easily reacting with $O_3$, and then becoming the $NO_2$. $NO_2$ is mainly causing the acidulation rain. So, we should develop the NOx gas sensing system to detect NOx gas. In this paper, we present the microstructure and the NOx gas detecting properties of the nitrocellulose/MWCNT thin film coated by the air-spray on the glass substrate. The nitrocellulose/MWCNT-based gas sensors have been studied detecting NOx molecules of a ppm-level at the temperature range of $30{\sim}120^{\circ}C$. The resistance of the sensors decreases when the sensors are exposed to NOx gas. As a results, we obtained the nitrocellulose/MWCNT sensors with the sensitivity of 0.6%/sec under the 0.8 ppm of NOx gas concetration. Also, we get the activation energy of 0.202eV from the sensor for the 0.3 ppm of NOx gas concentration.

Deformation Estimation of Slope Reinforced Materials by Rain and Temperature (사면보강재의 강우 및 온도에 의한 변형 해석)

  • Hong, Sung-Jin;Chang, Ki-Tae;Han, Heui-Soo
    • Journal of the Korean Geophysical Society
    • /
    • v.8 no.2
    • /
    • pp.97-103
    • /
    • 2005
  • It is necessary, in the light of the importance of long-term slope stability problem, to develop a simple method or tool which can figure out the possible failure zone resulted from weathering effect and other factors. The FBG sensor system is used to estimate the correlations between the temperature and the slope in Yunhwajae, and to find a failure zone in slopes effectively. This research is to seek for the correlation between the soil temperature distribution and the strain distribution in a active zone by analyzing the data from the in-situ measurement so that the possible failure zone should be well defined based on the correlation. The zone of high temperature fluctuation can be regarded as one of the possible sliding zone due to the weathering effect while the constant temperature depth of the ground, if exists, would not be relatively affected by the weathering process.

  • PDF

Intercomparison of Daegwallyeong Cloud Physics Observation System (CPOS) Products and the Visibility Calculation by the FSSP Size Distribution during 2006-2008 (대관령 구름물리관측시스템 산출물 평가 및 FSSP를 이용한 시정환산 시험연구)

  • Yang, Ha-Young;Jeong, Jin-Yim;Chang, Ki-Ho;Cha, Joo-Wan;Jung, Jae-Won;Kim, Yoo-Chul;Lee, Myoung-Joo;Bae, Jin-Young;Kang, Sun-Young;Kim, Kum-Lan;Choi, Young-Jean;Choi, Chee-Young
    • Korean Journal of Remote Sensing
    • /
    • v.26 no.2
    • /
    • pp.65-73
    • /
    • 2010
  • To observe and analyze the characteristics of cloud and precipitation properties, the Cloud physics Observation System (CPOS) has been operated from December 2003 at Daegwallyeong ($37.4^{\circ}N$, $128.4^{\circ}E$, 842 m) in the Taebaek Mountains. The major instruments of CPOS are follows: Forward Scattering Spectrometer Probe (FSSP), Optical Particle Counter (OPC), Visibility Sensor (VS), PARSIVEL disdrometer, Microwave Radiometer (MWR), and Micro Rain Radar (MRR). The former four instruments (FSSP, OPC, visibility sensor, and PARSIVEL) are for the observation and analysis of characteristics of the ground cloud (fog) and precipitation, and the others are for the vertical cloud characteristics (http://weamod.metri.re.kr) in real time. For verification of CPOS products, the comparison between the instrumental products has been conducted: the qualitative size distributions of FSSP and OPC during the hygroscopic seeding experiments, the precipitable water vapors of MWR and radiosonde, and the rainfall rates of the PARSIVEL(or MRR) and rain gauge. Most of comparisons show a good agreement with the correlation coefficient more than 0.7. These reliable CPOS products will be useful for the cloud-related studies such as the cloud-aerosol indirect effect or cloud seeding. The visibility value is derived from the droplet size distribution of FSSP. The derived FSSP visibility shows the constant overestimation by 1.7 to 1.9 times compared with the values of two visibility sensors (SVS (Sentry Visibility Sensor) and PWD22 (Present Weather Detect 22)). We believe this bias is come from the limitation of the droplet size range ($2{\sim}47\;{\mu}m$) measured by FSSP. Further studies are needed after introducing new instruments with other ranges.

The Development of Flood Protection System for Pad Transformer using Pneumatic Pressure (공기압을 이용한 패드 변압기 침수방지용 장치 개발에 관한 연구)

  • Kim, Gi-Hyun;Lee, Sang-Ick;Bae, Seok-Myung;Jung, Chan-Oong;Lee, Jae-Yong
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.58 no.1
    • /
    • pp.90-94
    • /
    • 2009
  • The inundation of substation and ground power equipment breaks out every summer season in low-lying downtown and low-lying shore by localized heavy rain, typhoon and tidal wave. For diminishing flood damage of electrical equipment in the root, flood protection system which is used the basic frame of Pad transformer is developed using pneumatic pressure. This system is established on pressure generator equipment and sensor of flooded level operates at flooding occurrence and is maintained a shutting tightly structure. The system is able to protect indraft water in Pad Transformer and supply the electricity at emergency(flooding). And we tested safety for insulation resistance at flooding and applying an electrical current. We estimate that loss cost which is caused by with flooding and the power failure will be diminished if it is addition to advances the reliability evaluation by setting an example.

Corona Discharge Characteristics of Transformer Bushing Model with Contaminnations in Air (오염물질에 따른 변압기부싱 모델의 기중 코로나 방전 특성)

  • Pang, Man-Sik;Kim, Woo-Jin;Kim, Young-Seok;Kim, Sang-Hyun
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.26 no.5
    • /
    • pp.91-96
    • /
    • 2012
  • The surface of bushing is contaminated with rain, dust, salt and others. A bushing with contaminations in air is serious problem in insulation. Therefore, it is important to understand the inspection and diagnoses of the safety. The ultra-violet rays(UV) camera has attracted interest from the view point of easy judgement. In this paper, we will report on the corona discharge characteristics of surface flashover model with contaminations in air. Also, UV images of discharge and corona pulse count in air are analyzed using prototype UV camera of Korea and a UV sensor with an optic lens. These results are studied at both AC and DC voltage under a non-uniform field.

Development of relationship equation for vehicle sensor signal and observed rainfall (차량용 강우센서의 Signal과 관측강우의 관계식 개발)

  • Lee, Suk Ho;Kim, Young Gon;Kim, Byung Sik
    • Journal of Korea Water Resources Association
    • /
    • v.50 no.1
    • /
    • pp.29-35
    • /
    • 2017
  • A vehicle rainfall sensor is made to control the operating speed of wipers depending on rainfall. Therefore this is the apparatus to determine the velocity phase of the wipers roughly based on the amount of rainfall. However, the technology which can judge the size of rainfall amount besides determining speed level of the wipers is developing according to the development of the function of rainfall sensor due to the development of technology. In this study, a rainfall measurement by using light scattering by precipitation particles was used. This measurement is to use light signal reflection from front glass and the bigger particle is the less detection of light by light scattering. The detection area of the rainfall sensor and detection channel were extended sizes to increase the accuracy of the rainfall. Also the W-S-R relational expression was developed by using a relationship between the specific precipitation (R) and the amount of sensor detection (S) when there is speed change of the wipers (W) and an indoor rainfall apparatus was used to convert sensing signal to rainfall. The signal system of vehicle rainfall sensor can be converted to the actual rainfall amount by using this formula and if this is provided to users then the vehicle observation network can produce higher-resolution than actual observation network can be produced.