• 제목/요약/키워드: Railway steel bridges

검색결과 139건 처리시간 0.031초

판형교 장대레일 부설에 따른 계측 및 평가 (Test and Evaluation of the CWR on Steel Plate Girder Railway Bridge)

  • 민경주;심현우;안용득
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2005년도 춘계학술대회 논문집
    • /
    • pp.568-573
    • /
    • 2005
  • To the installed CWR (Continuously Welded Rail) on steel plate girder bridges without ballast, shoes were replaced by the shoe for reduced axial force. During 9 months, from summer to winter, expansion by a temperature on girders, axial forces by a temperature on CWR, etc. are tested and the results are evaluated. Also, with the numerical analysis, the results - axial forces by a temperature on CWR, deformations of girders, etc. are compared and evaluated. From the longitudinal displacement on girders, occurred by run of trains, because of looking for the stability, the bearings for reducing axial forces are applied to the railway bridges. It is verified that the bearings for reducing axial forces disperse the axial forces by a temperature from the measurement of the forces on CWR of plate girder bridges,.

  • PDF

Finite element analysis based fatigue life evaluation approach for railway bridges: a study in Indian scenario

  • Ajmal, P.C. Hisham;Mohammed, Althaf
    • Structural Monitoring and Maintenance
    • /
    • 제5권4호
    • /
    • pp.429-443
    • /
    • 2018
  • Fatigue is a principal failure mode for steel structures, and it is still less understood than any other modes of failure. Fatigue life estimation of metal bridges is a major issue for making cost effective decisions on the rehabilitation or replacement of existing infrastructure. The fatigue design procedures given by the standard codes are either empirical or based on nominal stress approach. Since the fatigue life estimation through field measurements is difficult and costly, more researches are needed to develop promising techniques in the fatigue analysis of bridges through Finite Element Analysis (FEA). This paper aims to develop a methodology for the Fatigue life estimation of railway steel bridge using FEA. The guidelines of IIW-1823-07 were used in the development of the methodology. The Finite Element (FE) package ANSYS and the programming software MATLAB were used to implement this methodology on an Indian Railway Standard (IRS) welded plate girder bridge. The results obtained were compared with results from published literature and found satisfactory.

판형교에서 개량된 스페리칼받침의 유지보수 및 동적 거동 (Maintenance and Dynamic Behavior of Advanced Spherical Bearings under Railway Open-Steel-Plate-Girder Bridges)

  • 최은수;이희업;이승용
    • 한국철도학회논문집
    • /
    • 제11권2호
    • /
    • pp.165-175
    • /
    • 2008
  • 철도판형교에 있어 선받침은 사용 중에 많은 문제를 야기하고 있으며, 구조적으로 불안정하다. 기존 선받침의 문제점을 파악하기 위해 수평저항능력 실험을 수행하였다. 유지보수에 용이하고 들림현상에 저항할 수 있는 개선된 스페리칼받침을 개발하여 기존받침을 교체하였다. 개선된 스페리칼받침의 교체성능 실험과 부반력 저항능력 실험이 수행되어, 유지보수 성능 및 부반력 저항능력이 증명되었다. 선받침 상태 및 스페리칼받침으로 교체된 상태에서 판형교의 동적 거동 및 각 교량받침의 동적 거동을 계측하여 거동의 차이를 분석하였다. 이러한 실험 및 분석을 통하여 개선된 스페리칼받침이 철도 판형교에 교량받침으로 사용하기에 적합함을 알 수 있었다.

강철도교의 활하중-사하중 비에 따른 확률기반 피로수명 평가 (Probabilistic Fatigue Life Evaluation of Steel Railway Bridges according to Live-Dead Loads Ratio)

  • 이상목;이영주
    • 한국산학기술학회논문지
    • /
    • 제20권1호
    • /
    • pp.339-346
    • /
    • 2019
  • 강철도교에 대한 확률기반 피로 수명 평가를 위한 많은 연구들이 그간 있어 왔지만, 대부분 상대적으로 단순한 피로 균열 진전 모델을 기반으로 한 연구들이었다. 이 모델은 최소 응력이 0이고 일정한 응력변동 진폭을 가정하기 때문에, 철도교의 피로수명 평가에는 적합하지 않다. 따라서 본 연구에서는 보다 고도화된 균열 진전 모델을 이용해 강철도교의 피로 수명을 평가하는 새로운 확률기반 기법을 제안하였다. 또한 이 기법은 철도교에서 흔히 발생하는 다양한 하중 변동 진폭을 rainflow cycle counting algorithm을 사용해 고려할 수 있어, 보다 현실적인 피로 수명을 평가할 수 있다. 제안된 기법을 강철도교 예제 모델에 적용하여 피로 수명을 주요 부재 및 시스템에 대해 평가하였다. 또한 다양한 활하중-사하중 비가 피로 수명에 끼치는 영향을 분석하였으며, 그 결과 활하중-사하중 응력 비가 0에서 5/6까지 증가함에 따라 부재와 시스템 수준 모두에서 피로 수명이 30년 내외까지 줄어드는 것을 확인하였다.

무도상 판형교의 횡방향 동적거동특성 분석을 위한 실험적 연구 (Field Test to Investigate Lateral Dynamic Characteristics of Steel Plate Girder Railway Bridge without Ballast)

  • 오지택;김현민;박옥정;박찬
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2003년도 추계학술대회 논문집(II)
    • /
    • pp.591-595
    • /
    • 2003
  • Field measurements were conducted to analysis lateral dynamic characteristics of existing steel plate girder railway bridges without ballast. Three bridges which have 9m, 12m, 18m span length in Kyoung-Bu Line were selected for test. According to the each bridge, dynamic lateral deflections and accelerations were measured. From the present study, it was observed that dynamic lateral amplification phenomena caused by a fluctuation of lateral force were occurred under the current running circumstances. Lateral deflections were occurred below than that specified in Korean railway bridge specification, but lateral accelerations is a match for vertical accelerations. From now on, it is in need a plan to reduce lateral accelerations for the conventional railway Line speed up.

  • PDF

강철도교의 지간/강종과 피로강도의 관계 (Relationship between Span/Steel Grade and Fatigue Strength of Steel Railway Bridges)

  • 권순철;경갑수;윤철희;이준호
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2007년도 춘계학술대회 논문집
    • /
    • pp.1074-1079
    • /
    • 2007
  • It is important to evaluate the effect in the maintenance of steel bridge because the fatigue of the bridge is affected by the structural characteristic of bridge such as structure type, span and steel grade, etc. In this study, we analyzed the effect of fatigue strength by the changes of span of the bridge and the steel grade in many factors which have influence on the fatigue life of the bridge. For this analysis, we selected the objective bridges and performed the structural analyses for the various parameters such as span and steel grade. The fatigue evaluations were carried out by FAST which is a program for fatigue estimation and the results were compared.

  • PDF

철도용 SCP합성거더교의 LCC 분석에 관한 연구 (Life Cycle Cost Analysis of SCP Composite Girder Bridge for Railroad)

  • 김대성;조선규;권책;최영민
    • 한국철도학회논문집
    • /
    • 제9권2호
    • /
    • pp.244-249
    • /
    • 2006
  • Recently, the SCP(Steel Confined Prestressed concrete) composite girders are developed to improve the characteristic such as displacement, vibration, and heavy dead load due to influence of self weight, and inefficiency of steel section of exiting girder-type railroad bridges. It is needed to verify the economical effciency of newly developed SCP composite girder bridge compared with the conventional girder-type bridges. In this paper, LCC analysis for alternative railroad bridges Is performed and its technique based on level of risk(probability of failure) is suggested. From the results, it may be stated that SCP composite girder bridge is more economical than a conventional one.

고속철도 강교량의 다목적 최적설계 (Multi-objective Optimization of High Speed Railway Steel Bridges)

  • 조효남;민대홍;정기영
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 2002년도 가을 학술발표회 논문집
    • /
    • pp.263-270
    • /
    • 2002
  • This study proposes a multi-objective optimum design method for a rational optimization of high-speed railway bridges. This multi-objective optimization is found to be effective in optimizing multi-objective problems that incorporate cost and dynamic responses such as vertical acceleration and displacement. These design factors are so important in the high-speed railway bridges. And the trade off method which is one of the most typical multi-objective optimization methods is used in this study, since the dynamic factors are formulated as objective function and also considered as constraints. And the Pareto curve can be obtained by performing the multi-objective optimization for real high-speed railway bridges. Thus, it is found that more reasonable design can be obtained when compared with those using conventional design procedure.

  • PDF

Vertical vibrations of a multi-span beam steel bridge induced by a superfast passenger train

  • Klasztorny, M.
    • Structural Engineering and Mechanics
    • /
    • 제12권3호
    • /
    • pp.267-281
    • /
    • 2001
  • Transient and quasi-steady-state vertical vibrations of a multi-span beam steel bridge located on a single-track railway line are considered, induced by a superfast passenger train, moving at speed 120-360 km/h. Matrix dynamic equations of motion of a simplified model of the system are formulated partly in the implicit form. A recurrent-iterative algorithm for solving these equations is presented. Excessive vibrations of the system in the resonant zones are reduced effectively with passive dynamic absorbers, tuned to the first mode of a single bridge span. The dynamic analysis has been performed for a series of types of bridges with span lengths of 10 to 30 m, and with parameters closed to multi-span beam railway bridges erected in the second half of the $20^{th}$ century.

Innovative simulation method of the spherical steel bearing applied to high-speed railway bridges

  • Renkang, Hu;Shangtao, Hu;Xiaoyu, Zhang;Menggang, Yang;Na, Zheng
    • Structural Engineering and Mechanics
    • /
    • 제85권2호
    • /
    • pp.265-274
    • /
    • 2023
  • The spherical steel bearings (SSBs) has been gradually replaced traditional rubber bearings and extensively applied to high-speed railway (HSR) bridges in China, due to their durability and serviceability. Nevertheless, SSB is generally simplified to the ordinary constraints in the finite element model, which cannot reflect its detailed mechanical characteristics, especially its seismic performance. To provide a more precisely simulation, an innovative and simplified finite element simulation method is proposed and the combined element group is developed in ANSYS. The primary parameters were determined by means of the performance test of SSB. The finite element model of SSB applied to a single-span HSR simply supported girder bridge was established through the proposed method. The seismic performance of the SSB was further investigated. A shake table test was conducted to evaluate the accuracy of the proposed simulation method. It is found that the numerical results could have a good agreement with the experiment, namely, the proposed method is feasible and efficient.