• Title/Summary/Keyword: Railway safety indicators

Search Result 8, Processing Time 0.023 seconds

Development of the Assessment Indicators for Railway Safety

  • Song, Bo-Young;Moon, Dae-Seop;Lee, Hi Sung
    • International Journal of Railway
    • /
    • v.5 no.4
    • /
    • pp.175-181
    • /
    • 2012
  • This study proposes a model for railway safety assessment with which the safety of whole railway system can be evaluated. The purpose of the assessment model is to generate safety indicators which quantitatively represent the degree of railway safety. Safety indicators were proposed as three indicators according to their functions; accident indicators, safety management indicators, and safety culture indicators. This paper describes the first result on the safety target which will be a key starting point toward the development of safety assessment model. It is recommended that the safety target to be composed of several sub-targets are apportioned to constituent components. It is concluded that the classification of safety target has influence on deciding components or attributes that constitute each sub-indicators; accident indicators, safety management indicators, and safety culture indicators. Based on this study, a railway safety assessment model will be developed in the following study.

A Conceptual Study of a Framework for Real-Time Railway Safety Monitoring and Control System Based on Safety Performance Monitoring Indicators (안전성과 모니터링지표 기반의 실시간 철도안전 감시제어 시스템의 프레임워크에 대한 개념 연구)

  • Lee, Donghoun;Tak, Sehyun;Kim, Sangahm;Yeo, Hwasoo
    • Journal of the Korean Society for Railway
    • /
    • v.19 no.4
    • /
    • pp.526-538
    • /
    • 2016
  • The government of South Korea has made great efforts in the area of railway safety management by means of a railway safety law and an integrated railway safety plan established in 2004 after the Daegu subway fire accident. However, after certain railway incidents, a reactive railway safety management system has been implemented that has led to fatal accidents caused by the collision, derailment, and fire every year. Hence, this study is intended to propose a framework that integrates data from distributed detection devices into a real-time railway safety monitoring and control system for proactive safety management. Furthermore, we will provide a future development direction for safety performance monitoring indicators to determine whether the railway safety monitoring and control system works effectively. The proposed framework is expected to be a cornerstone for the real-time railway safety monitoring and control system to be implemented in the future.

Risk Estimation Study on Railway Track Worker Hit by Train (철도 운행선로 작업자와 열차 접촉사고 위험도 평가에 관한 연구)

  • Kwak, Sang Log
    • Journal of the Korean Society of Safety
    • /
    • v.35 no.3
    • /
    • pp.72-78
    • /
    • 2020
  • The accident fatality rate has decreased by more than 90% compared to 2006, due to the safety management and safety investment based on the Rail Safety Act. Most railway safety indicators, including fatality rates, have improved significantly from 60% to 80%, reaching the level of developed countries in terms of most railway safety indicators. However, the only staff fatality rate at work is not improved, and it is 3 to 5 times higher than that of developed countries. Most of the fatality occurred during employee's work recently occurred due to accidents hit by train while track work. In principle, when operating track need to check or maintenance, the operation of the train should be stopped and the work carried out. However, in Korea, due to the highest passenger density and train operating density in the world, it is caused by a structural problem that requires workers to enter the track while the train is running and perform various tasks such as maintenance and inspection. In this study, we analyzed the risk of accidents caused by hit by trains on the track, which is the biggest cause of staff fatality, using the main statistics of the last 10 years. In detail, the scenarios of the main causes of hit by trains and workers were formed to suggest the effectiveness of the current preventive measures and supplementary.

An Evaluative Study of the Operational Safety of High-Speed Railway Stations Based on IEM-Fuzzy Comprehensive Assessment Theory

  • Wang, Li;Jin, Chunling;Xu, Chongqi
    • Journal of Information Processing Systems
    • /
    • v.16 no.5
    • /
    • pp.1064-1073
    • /
    • 2020
  • The general situation of system composition and safety management of high-speed railway terminal is investigated and a comprehensive evaluation index system of operational security is established on the basis of railway laws and regulations and previous research results to evaluate the operational security management of the high-speed railway terminal objectively and scientifically. Index weight is determined by introducing interval eigenvalue method (IEM), which aims to reduce the dependence of judgment matrix on consistency test and improve judgment accuracy. Operational security status of a high-speed railway terminal in northwest China is analyzed using the traditional model of fuzzy comprehensive evaluation, and a general technique idea and references for the operational security evaluation of the high-speed railway terminal are provided. IEM is introduced to determine the weight of each index, overcomes shortcomings of traditional analytic hierarchy process (AHP) method, and improves the accuracy and scientificity of the comprehensive evaluation. Risk factors, such as terrorist attacks, bad weather, and building fires, are intentionally avoided in the selection of evaluation indicators due to the complexity of risk factors in the operation of high-speed railway passenger stations and limitation of the length of the paper. However, such risk factors should be considered in the follow-up studies.

Development of Standard Risk Indicators for the Prevention of Serious Accidents in Mobile Crane Operations (Focused on Construction Industry) (이동식크레인 작업의 중대재해예방을 위한 표준 리스크 평가 지수 개발 (건설업을 중심으로))

  • Jonggook Choi;Jongwoo Lee
    • Journal of the Society of Disaster Information
    • /
    • v.19 no.3
    • /
    • pp.719-728
    • /
    • 2023
  • Purpose: Mobile cranes are machines that contribute to high mortality, and the High Risk Factor (SIF) information, which analyzed 2,574 accidental deaths in the construction industry in the past 6 years (2016~2021), resulted in a total of 61 mobile crane accidents. Despite safety measures in the field, it is not used properly. In this study, we present standard risk assessment indicators that contribute to accident prevention. Method: Through expert interviews, fatal accident case analysis, field analysis, and literature research, we present the standard risk assessment index method of the 4M risk assessment method. Result: As a result of analyzing the risk assessment of eight sites, it was concluded that it cannot make a significant contribution to disaster prevention and should be applied as an improvement measure of the Standard Risk Assessment Index Law. Conclusion: Switching to the standard risk assessment index method at construction sites has been proposed to make it easier for health and safety personnel and workers to use, contributing to the reduction of accidents.

A Study on the Estimation and Verification of the Availability of the Unmanned Light Railway (무인 경량전철 가용도 산정 및 검증에 관한 연구)

  • Kwon, Sang Don;Song, Bo Young;Lee, Hi Sung
    • Journal of the Korean Society of Safety
    • /
    • v.34 no.1
    • /
    • pp.108-114
    • /
    • 2019
  • Unattended Train operation(UTO) requires higher safety target than other systems, since all train operations are automatic. The system provider to deliver without accident or failure, and the operator to transport passengers without accident by putting all trains supplied, including them, into service. Safety rates without such failures can be represented as indicators of RAMS, among which availability is continuously controllable to achieve the target, with a clear target. Availability is often required by the licensee from the initial stage of the project to demonstrate that the request for proposal (RFP) is usually specified and to maintain separate availability targets at the operational stage. In particular, unlike unmanned operation light rail in complex systems, simple formulas are often presented to facilitate verification at each stage. This paper presents this method of usability calculation in an integrated manner at all levels and analyzes the existing usability values to ensure reliability of the availability formula for integrated use in unmanned light rail systems.

A Study on the Establishment and Application of Evaluation Criteria for Old Railway Station Considering the Level of Railway Service (철도 서비스수준을 고려한 노후철도역사 평가기준 마련 및 적용방안)

  • Kim, Kyung Ho;Kim, Si Gon
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.44 no.1
    • /
    • pp.101-108
    • /
    • 2024
  • The total number of railroad stations managed in Korea is 322 (including general and wide-area railways), and a considerable number of stations are aging. In terms of the size of the existing railway station and the number of entrances, it has not been possible to secure adequate service capacity, and the demand for station improvement is increasing due to changes in surrounding conditions such as urban development. In the past, railroad stations were focused on the simple function of a connection passage in terms of maintenance or management, but in recent years, railroad stations are also changing to an atmosphere that they should be reborn as a user-centered comfortable, convenient, and safe service provision space. In this study, a case study related to the improvement of the old railway station was conducted to derive an improvement plan that meets the improvement standard of the old station, and the service level evaluation standard was developed. By introducing the concept of service level (LOS) in the development model, station congestion, station movement convenience, and station safety were selected as evaluation indicators. In addition, this development model applied an analytical stratification technique to divide various evaluation elements of each indicator into major and detailed elements and derive the relative importance of the elements by class. Priority for improvement was derived using the ratio of the number of E and F on the LOS for each facility. Based on this study, it is expected to be helpful in using it as an evaluation criterion for improving objective and equitable railway station.

Theoretical analysis of erosion degradation and safety assessment of submarine shield tunnel segment based on ion erosion

  • Xiaohan Zhou;Yangyang Yang;Zhongping Yang;Sijin Liu;Hao Wang;Weifeng Zhou
    • Geomechanics and Engineering
    • /
    • v.37 no.6
    • /
    • pp.599-614
    • /
    • 2024
  • To evaluate the safety status of deteriorated segments in a submarine shield tunnel during its service life, a seepage model was established based on a cross-sea shield tunnel project. This model was used to study the migration patterns of erosive ions within the shield segments. Based on these laws, the degree of deterioration of the segments was determined. Using the derived analytical solution, the internal forces within the segments were calculated. Lastly, by applying the formula for calculating safety factors, the variation trends in the safety factors of segments with different degrees of deterioration were obtained. The findings demonstrate that corrosive seawater presents the evolution characteristics of continuous seepage from the outside to the inside of the tunnel. The nearby seepage field shows locally concentrated characteristics when there is leakage at the joint, which causes the seepage field's depth and scope to significantly increase. The chlorine ion content decreases gradually with the increase of the distance from the outer surface of the tunnel. The penetration of erosion ions in the segment is facilitated by the presence of water pressure. The ion content of the entire ring segment lining structure is related in the following order: vault < haunch < springing. The difference in the segment's rate of increase in chlorine ion content decreases as service time increases. Based on the analytical solution calculation, the segment's safety factor drops more when the joint leaks than when its intact, and the change rate between the two states exhibits a general downward trend. The safety factor shows a similar change rule at different water depths and continuously decreases at the same segment position as the water depth increases. The three phases of "sudden drop-rise-stability" are represented by a "spoon-shaped" change rule on the safety factor's change curve. The issue of the poor applicability of indicators in earlier studies is resolved by the analytical solution, which only requires determining the loss degree of the segment lining's effective bearing thickness to calculate the safety factor of any cross-section of the shield tunnel. The analytical solution's computation results, however, have some safety margins and are cautious. The process of establishing the evaluation model indicates that the secondary lining made of molded concrete can also have its safety status assessed using the analytical solution. It is very important for the safe operation of the tunnel and the safety of people's property and has a wide range of applications.