• Title/Summary/Keyword: Railway Track

Search Result 1,567, Processing Time 0.033 seconds

Screening Effects of Double-track Electric Railway and Shielded Cables on Communication-Line Inductive Interference (전기철도 복선화 및 차폐 케이블 적용에 따른 통신선 유도장해 차폐 효과)

  • Seol, Il-Hwan;Choi, Kyu-Hyoung
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.14 no.10
    • /
    • pp.5148-5155
    • /
    • 2013
  • The induced voltage on the telecommunication cable generated by nearby electric railway system may bring about telecommunication errors and safety accidents. In order to reduce the induced voltage and to achieve communication reliability, the effect of the shield cables and the recent double-track railway systems on the inductive interference should be investigated. This paper analyzes the parameters which seriously influence the induced voltage on the telecommunication cables which run parallel with a AT-fed electric railway line, and provides a simulation-based approach to estimate the amount of the induced voltage. Simulation results indicate that the induced noise voltage generated by a double-track railway decreases by 18 % compared to that generated by a single-track railway, showing the screening effect by nearby track. The induced noise voltages on the 50%-shielded cable and 15%-shielded cable decrease to 1/8 and 1/15 of the induced voltage on the non-shielded cable, respectively. A meaningful shield effect is achieved and the induced voltage is minimized by the double-track railway and the shielded cable.

Evaluation of the Structural Behavior Characteristics and Long Term Durability for Transition Track Systems in Railway Bridge Deck Ends (철도교량 단부 전환부 궤도시스템의 구조적 거동특성 및 장기 내구성능 분석)

  • Lee, Kwangdo;Jeong, Incheol;Choi, Jungyoul;Park, Yonggul
    • Journal of the Korean Society for Railway
    • /
    • v.17 no.4
    • /
    • pp.260-269
    • /
    • 2014
  • Transition tracks are an alternative for enhancing the long-term serviceability and durability of concrete track components in railway bridges. The goal of this paper is to investigate the structural behavior for transition track systems of railway bridge deck ends. In this study, the structural behavior of transition tracks such as the variations in static, dynamic, and fatigue behaviors and dynamic properties (natural frequency and damping ratio) are assessed and compared through performing loading tests and finite element analyses using actual vehicle impact loadings. As a result, it is found that the structural behavior of the transition track system is expected to satisfy the actual vehicle impact loading, and the variation in the neutral axis and dynamic characteristics are not affected by the fatigue loading. Therefore, it is inferred that the structural capacity and long-term durability of the transition track system is proven.

Evaluation of the Railroad Track Life Cycle Based on the Metro Rail Wear Data Regression Analysis (지하철 마모 데이터 회귀분석을 통한 궤도 수명 평가)

  • Jeong, Min-Chul;Kim, Jung-Hoon;Lee, Jee-Ha;Kang, Yun-Suk;Kong, Jung-Sik
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.14 no.4
    • /
    • pp.86-93
    • /
    • 2010
  • The wear of railway track affects loss of rough ride, noise or vibration of train and traveling safety. Moreover as the track is worn away, this promotes destruction of structural mechanism of rail track which can bring about increasing of rail track maintenance cost drastically. For this reason, it is very important and interested research subject to design railway track structure and to analyse train movement mechanism based on systematic analysis of the reasons causing rail wear possible in real field. In this research, for the efficient maintenance, Life Cycle Performance of rail track and maintenance characteristics are computed considering some track components such as track type, contracting type, sleeper type and roadbed type. Time - Wear probabilistic distribution relationship as well as multiple regression analysis based on time, curvature and wear data are computed to predict the service life remainder of railway track and to be adapted to safety assessment.

Design and modelling of pre-cast steel-concrete composites for resilient railway track slabs

  • Mirza, Olivia;Kaewunruen, Sakdirat;Kwok, Kenny;Griffin, Dane W.P.
    • Steel and Composite Structures
    • /
    • v.22 no.3
    • /
    • pp.537-565
    • /
    • 2016
  • Australian railway networks possess a large amount of aging timber components and need to replace them in excess of 280 thousands $m^3$ per year. The relatively high turnover of timber sleepers (crossties in a plain track), bearers (skeleton ties in a turnout), and transoms (bridge cross beams) is responsible for producing greenhouse gas emissions 6 times greater than an equivalent reinforced concrete counterparts. This paper presents an innovative solution for the replacement of aging timber transoms installed on existing railway bridges along with the incorporation of a continuous walkway platform, which is proven to provide environmental, safety and financial benefits. Recent developments for alternative composite materials to replace timber components in railway infrastructure construction and maintenance demonstrate some compatibility issues with track stiffness as well as structural and geometrical track systems. Structural concrete are generally used for new railway bridges where the comparatively thicker and heavier fixed slab track systems can be accommodated. This study firstly demonstrates a novel and resilient alterative by incorporating steel-concrete composite slab theory and combines the capabilities of being precast and modulated, in order to reduce the depth, weight and required installation time relative to conventional concrete direct-fixation track slab systems. Clear benefits of the new steel-concrete composites are the maintainability and constructability, especially for existing railway bridges (or brown fields). Critical considerations in the design and finite element modelling for performance benchmarking of composite structures and their failure modes are highlighted in this paper, altogether with risks, compatibilities and compliances.

Experimental investigation of effects of sand contamination on strain modulus of railway ballast

  • Kian, Ali R. Tolou;Zakeri, Jabbar A.;Sadeghi, Javad
    • Geomechanics and Engineering
    • /
    • v.14 no.6
    • /
    • pp.563-570
    • /
    • 2018
  • Ballast layer has an important role in vertical stiffness and stability of railway track. In most of the Middle East countries and some of the Asian ones, significant parts of railway lines pass through desert areas where the track (particularly ballast layer) is contaminated with sands. Despite considerable number of derailments reported in the sand contaminated tracks, there is a lack of sufficient studies on the influences of sand contamination on the ballast vertical stiffness as the main indicator of track stability. Addressing this limitation, the effects of sand contamination on the mechanical behavior of ballast were experimentally investigated. For this purpose, laboratory tests (plate load test) on ballast samples with different levels of sand contamination were carried out. The results obtained were analyzed leading to derive mathematical expressions for the strain modulus ($E_V$) as a function of the ballast level of contamination. The $E_V$ was used as an index for evaluation of the load-deformation characteristics and bearing capacity of track substructure. The critical limit of sand contamination, after which the $E_V$ of the ballast reduces drastically, was obtained. It was shown that the obtained research results improve the current track maintenance approach by providing key guides for the optimization of ballast maintenance planning (the timing of ballast cleaning or renewal).

Experimental Study on Condition Evaluation for Railway Ballasted Track (자갈궤도의 상태평가를 위한 실험적 연구)

  • Choi, Jung-Youl;Bahng, Eun Young
    • Journal of the Korean Society of Safety
    • /
    • v.33 no.2
    • /
    • pp.152-157
    • /
    • 2018
  • The degradation and damage of the components for ballasted track could be caused a serious problem for railway safety. Therefore, the integrity evaluation of ballasted track condition is important to ensure and predict that the track safety and track maintenance. Various track components such as rail pad, ballast, sleeper, and rail that are widely used in Republic of Korea and represent a range of physical properties have been selected for this research. In this study, the experimental modal analysis was performed by the non-destructive testing. Modal test results were obtained from the field test and used to assess the condition of the track components. From the field test, the system of ballasted track was found to be simplified as a two-degree-of-freedom(2DOF) dynamic system. The condition of track component was found to directly affect the dynamic response of ballasted tracks. As the results, the dynamic properties of the track component was depend on the track condition and was distributed more roughly and over a wider range than its initial design values. Further, the methodology presented in this study is possible to determine experimentally the fundamental track parameters which are required in the numerical analysis, and also are useful for the safety assessment of track condition.

Effect of nonlinearity of fastening system on railway slab track dynamic response

  • Sadeghi, Javad;Seyedkazemi, Mohammad;Khajehdezfuly, Amin
    • Structural Engineering and Mechanics
    • /
    • v.83 no.6
    • /
    • pp.709-727
    • /
    • 2022
  • Fastening systems have a significant role in the response of railway slab track systems. Although experimental tests indicate nonlinear behavior of fastening systems, they have been simulated as a linear spring-dashpot element in the available literature. In this paper, the influence of the nonlinear behavior of fastening systems on the slab track response was investigated. In this regard, a nonlinear model of vehicle/slab track interaction, including two commonly used fastening systems (i.e., RFFS and RWFS), was developed. The time history of excitation frequency of the fastening system was derived using the short time Fourier transform. The model was validated, using the results of a comprehensive field test carried out in this study. The frequency response of the track was studied to evaluate the effect of excitation frequency on the railway track response. The results obtained from the model were compared with those of the conventional linear model of vehicle/slab track interaction. The effects of vehicle speed, axle load, pad stiffness, fastening preload on the difference between the outputs obtained from the linear and nonlinear models were investigated through a parametric study. It was shown that the difference between the results obtained from linear and nonlinear models is up to 38 and 18 percent for RWFS and RFFS, respectively. Based on the outcomes obtained, a nonlinear to linear correction factor as a function of vehicle speed, vehicle axle load, pad stiffness and preload was derived. It was shown that consideration of the correction factor compensates the errors caused by the assumption of linear behavior for the fastening systems in the currently used vehicle track interaction models.

Effect of Cable Tension Changes on Track Irregularity of Railway Ballasted Track on Railway Steel Composite Bridge (케이블 장력변화가 강철도 복합교량 상 자갈궤도의 궤도틀림에 미치는 영향)

  • Jung-Youl Choi;Soo-Jae Lee
    • The Journal of the Convergence on Culture Technology
    • /
    • v.9 no.4
    • /
    • pp.633-638
    • /
    • 2023
  • In this study, the effect of the change in cable tension on the track irregularity of railway ballasted track on a railway steel composite bridge was analyzed. As a result of comparing design and analysis results for cable tension, a difference of less than 3% was found, and analysis modeling was analyzed to reflect the design conditions well. In addition, the adequacy of the analysis modeling was demonstrated by comparing the field measurement results with the analysed cable tension. By considering the change in cable tension as a variable, the track irregularity of the railway steel composite bridge was analyzed. As a result of the analysis, it was analyzed that the total and one-sided cable tension change had a direct effect on the vertical irregularity among the track irregularity items. In addition, it was found that the change in track irregularity occurred in the section close to the cable position. It was analyzed that the change in cable tension had a more direct effect on track irregularity that had a direct correlation with the vertical direction rather than the lateral direction.

A Study of Decreide Light Railway of Track's Noise and Vibration (도시철도 궤도의 소음.진동의 저감 대책에 관한 연구)

  • Kim, Dong-Ki;Pack, Jong-Bok;Pack, Kwang-Hyun
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2007.11a
    • /
    • pp.163-168
    • /
    • 2007
  • A light railway operationis an effective means to solve a traffic problem of the city however, noise and vibration is pollution happened. This paper studied noise and vibration pollution of a light railway operation in order to let a decrease. The study range was only track condition and civil engineering structure condition. The way how we decrease noise and vibration in a protection vibration track, ballasted track, non-ballasted track, floating track trends was devoted is long rail laying, low vibration track lying. It was the most economic that the examination results track section a complement, and it was proved that a certain way.

  • PDF

Evaluation of Dynamic Behavior of Rail Joints on Personal Rapid Transit Track (소형무인경전철(PRT)궤도 레일이음매의 동적거동 분석)

  • Choi, Jung-Youl;Kim, Jun-Hyung
    • Journal of the Korean Society of Safety
    • /
    • v.31 no.5
    • /
    • pp.89-94
    • /
    • 2016
  • The objective of this study was to estimate the dynamic behavior of a personal rapid transit(PRT) track system using a rail of rectangular tube section and a rail joint of sliding type, and to compare the results with the normal rail and rail joint of a PRT track system by performing field measurements using actual vehicles running along the service lines. The measured vertical displacement of rail and sleeper, and vertical acceleration of rail for the normal rail and rail joint section were found to be similar, and the rail joint of sliding type satisfied the design specifications of the track impact factor for a conventional railway track. The experimental results showed that the overall dynamic response of the rail joint were found to be similar to or less than that of the normal rail, therefore the rail joint of sliding type for PRT track system was sufficient to ensure a stability and safety of PRT track system.