• 제목/요약/키워드: Railway Dynamics

검색결과 242건 처리시간 0.026초

Dynamic analysis of bridge girders submitted to an eccentric moving load

  • Vieira, Ricardo F.;Lisi, Diego;Virtuoso, Francisco B.
    • Structural Engineering and Mechanics
    • /
    • 제52권1호
    • /
    • pp.173-203
    • /
    • 2014
  • The cross-section warping due to the passage of high-speed trains can be a relevant issue to consider in the dynamic analysis of bridges due to (i) the usual layout of railway systems, resulting in eccentric moving loads; and (ii) the use of cross-sections prone to warping deformations. A thin-walled beam formulation for the dynamic analysis of bridges including the cross section warping is presented in this paper. Towards a numerical implementation of the beam formulation, a finite element with seven degrees of freedom is proposed. In order to easily consider the compatibility between elements, and since the coupling between flexural and torsional effects occurs in non-symmetric cross-sections due to dynamic effects, a single axis is considered for the element. The coupled flexural-torsional free vibration of thin-walled beams is analysed through the presented beam model, comparing the results with analytical solutions presented in the literature. The dynamic analysis due to an eccentric moving load, which results in a coupled flexural-torsional vibration, is considered in the literature by analytical solutions, being therefore of a limited applicability in practice engineering. In this paper, the dynamic response due to an eccentric moving load is obtained from the proposed finite element beam model that includes warping by a modal analysis.

A framework for carrying out train safety evaluation and vibration analysis of a trussed-arch bridge subjected to vessel collision

  • Xia, Chaoyi;Zhang, Nan;Xia, He;Ma, Qin;Wu, Xuan
    • Structural Engineering and Mechanics
    • /
    • 제59권4호
    • /
    • pp.683-701
    • /
    • 2016
  • Safety is the prime concern for a high-speed railway bridge, especially when it is subjected to a collision. In this paper, an analysis framework for the dynamic responses of train-bridge systems under collision load is established. A multi-body dynamics model is employed to represent the moving vehicle, the modal decomposition method is adopted to describe the bridge structure, and the time history of a collision load is used as the external load on the train-bridge system. A (180+216+180) m continuous steel trussed-arch bridge is considered as an illustrative case study. With the vessel collision acting on the pier, the displacements and accelerations at the pier-top and the mid-span of the bridge are calculated when a CRH2 high-speed train running through the bridge, and the influence of bridge vibration on the running safety indices of the train, including derailment factors, offload factors and lateral wheel/rail forces, are analyzed. The results demonstrate that under the vessel collision load, the dynamic responses of the bridge are greatly enlarged, threatening the running safety of high-speed train on the bridge, which is affected by both the collision intensity and the train speed.

부하 주파수 제어를 위한 퍼지 로직 기반 확장 적분 제어 (Fuzzy Logic Based Extended Integral Control for Load Frequency Control)

  • 류헌수;이종기;김석주;김백;문영현
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2001년도 춘계학술대회 논문집 전력기술부문
    • /
    • pp.210-213
    • /
    • 2001
  • This study presents an effective variable forgetting factor method based on fuzzy logic to suppress frequency droop in extended integral load frequency control. The performance of the extended integral control is greatly dependent on the decaying factor. For an optimal or near optimal performance, it is necessary that the decaying factor as well as the feedback gains should be changed very quickly in response to changes in the system dynamics. However, because of its time-varing characteristic, the optimal decaying factor is difficult to be selected analytically. By adopting fuzzy set theory, the decaying factor can be determined quickly to respond to the variation of the feedback signals. This study builds a fuzzy rule base with use of the change of frequency and its rate as inputs. The computer simulation has been conducted for the single machine system. The simulation results show that the proposed fuzzy 1o81c based controller yields more improved control performance than the conventional PI controller.

  • PDF

반응표면모델에 의한 철도 차량 대차의 탄성조인트 최적설계 (Optimization of the Elastic Joint of Train Bogie Using by Response Surface Model)

  • 박찬경;이광기
    • 대한기계학회논문집A
    • /
    • 제24권3호
    • /
    • pp.661-666
    • /
    • 2000
  • Optimization of the elastic joint of train is performed according to the minimization of ten responses which represent driving safety and ride comfort of train and analyzed by using the each response se surface model from stochastic design of experiments. After the each response surface model is constructed, the main effect and sensitivity analyses are successfully performed by 2nd order approximated regression model as described in this paper. We can get the optimal solutions using by nonlinear programming method such as simplex or interval optimization algorithms. The response surface models and the optimization algorithms are used together to obtain the optimal design of the elastic joint of train. the ten 2nd order polynomial response surface models of the three translational stiffness of the elastic joint (design factors) are constructed by using CCD(Central Composite Design) and the multi-objective optimization is also performed by applying min-max and distance minimization techniques of relative target deviation.

크리깅 모델에 의한 철도차량 현수장치 최적설계 (Optimization of a Train Suspension using Kriging Model)

  • 박찬경;이광기;이태희;배대성
    • 대한기계학회논문집A
    • /
    • 제27권6호
    • /
    • pp.864-870
    • /
    • 2003
  • In recent engineering, the designer has become more and more dependent on the computer simulations such as FEM(Finite Element Method) and BEM(Boundary Element Method). In order to optimize such implicit models more efficiently and reliably, the meta -modeling technique has been developed for solving such a complex problems combined with the DACE(Design and Analysis of Computer Experiments). It is widely used for exploring the engineer's design space and for building approximation models in order to facilitate an effective solution of multi-objective and multi-disciplinary optimization problems. Optimization of a train suspension is performed according to the minimization of forty -six responses that represent ten ride comforts, twelve derailment quotients, twelve unloading ratios, and twelve stabilities by using the Kriging model of a train suspension. After each Kriging model is constructed, multi -objective optimal solutions are achieved by using a nonlinear programming method called SQP(Sequential Quadratic Programming).

존 모델을 이용한 종류식 배연 터널 화재시 연기 거동에 대한 수치해석적 연구 (A Numerical Study on Smoke Movement in Longitudinal Ventilation Tunnel Fires Using a Zone Model)

  • 김현정;노재성;김동현;장용준;유홍선
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2007년도 춘계학술대회 논문집
    • /
    • pp.1319-1324
    • /
    • 2007
  • Many researches have been performed to analyze the smoke movement in tunnel fires by using field model. Recently, FDS(Fire Dynamics Simulator) v.4, which is one of the field model and developed from NIST(National Institute of Standards and Technology), is widely used. In tunnel fires, FDS can show detail results in local point, but it has difficulties in boundary condition and taking long computing time as the number of grid increases. So, there is a need to use alternative method for tunnel fire simulation. A zone model is different kind of CFD method and solves ordinary differential equation based on conservation and auxiliary equations. It shows good macroscopic view in less computing time compared to field model. In this study, therefore, to confirm the applicability of CFAST in tunnel fire analysis, numerical simulations using CFAST are conducted to analyze smoke movement in longitudinal ventilation reduced-scale tunnel fires. Then the results are compared with experimental results. The differences of temperature and critical velocity between numerical results and experimental data are over $30^{\circ}C$ and 0.9m/s, respectively. These values are out of error range. It shows that CFAST 6.0 is hard to be used for tunnel fire simulation.

  • PDF

환기량 조건이 열차 화재 성장에 미치는 영향성에 대한 FDS 화재 시뮬레이션 (Numerical study of the Effect of Ventilation Condition on Rolling Stock Fire Growth through the FDS Simulation)

  • 양성진;이창덕;오지은;강찬용
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2010년도 춘계학술대회 논문집
    • /
    • pp.124-132
    • /
    • 2010
  • To predict and analyze the rolling stock's fire growth is considered not only important factor in estimating hazard analysis of rolling stock, but also a primary factor in aspect of a rail load facility. Because it's could be regarded as a ignition source in risk assesment for the facility i.e. tunnel and station. However, currently, standardized method to predict and analyze the fire growth has not been completed yet. it is due to the fact that fire growth is not only depended on thermal property of interior materials, but also is affected dominantly by various factors such as ignition source (characterized by location, duration, and intensity), train running condition and in/exterior ventilation condition. Especially, ventilation condition is one of the most effective factor to affect fire growth in compartment space as noticed by under-ventilation fire condition. In this study, the effect of each ventilation condition on fire growth and load were examined through the numerical method through FDS (Fire Dynamics Simulator).

  • PDF

저상굴절 궤도차량의 AWS ECU 테스트 플랫폼을 위한 가상 주행환경 개발 (Development of the Virtual Driving Environment for the AWS ECU Test Platform of the Bi-modal Tram)

  • 최성훈;박태원;이수호;문경호
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2007년도 추계학술대회 논문집
    • /
    • pp.283-290
    • /
    • 2007
  • A bi-modal tram has been developed to offer an advanced transportation service compared with existing vehicles. The All-Wheel-Steering system is applied to the bi-modal tram to satisfy the required steering performance because the bi-modal tram has extended length and articulated mechanism. An ECU for the steering system is essential to steer wheels on 2nd and 3rd axles by the specific AWS algorithm with the prescribed driving condition. The Hardware-In-the-Loop Simulation(HILS) system is planned for the purpose of evaluating the steering system of the bi-modal tram. There are kinematic links with the hydraulic actuator to steer wheels on each 2nd and 3rd axles and also same steering mechanism as the actual vehicle is in the HILS system. Controlling the movement of hydraulic actuator which reflects the lateral steering reaction force on each wheel is the key to realize the HILS system, but the reaction force is continuously changed according to various driving conditions. Therefore, the simulation through the multi-body dynamics model is used to obtain the required forces.

  • PDF

화재 발생 지하철 역사에서의 여객 대피 해석에 관한 연구 (A Numerical Study on Passengers' Evacuation in a subway station in case of Fire Occurrence)

  • 김치겸;이성원;허남건;남성원
    • 대한설비공학회:학술대회논문집
    • /
    • 대한설비공학회 2009년도 하계학술발표대회 논문집
    • /
    • pp.142-147
    • /
    • 2009
  • In the present study, a numerical simulation of passenger evacuation in a subway station was performed. Algorithm for passenger flow analysis based on DEM(Discrete Element Method) has been improved to simulate passenger flow in detailed geometry. The effect of grid density was assessed in the present study to show the advantage of using finer grid in the simulation. The method of coupling passenger flow and fire simulation has also been investigated to analyze passenger evacuation flow under fire. In this method the CO distributions in the subway station was used to assess fire hazards of passenger by means of FED(Fractional Effective Dose) model. Using the coupled algorithm a simulation for passenger evacuation flow and fire analysis were performed simultaneously in the simplified subway station. This algorithm could be used in the design of subway station for the purpose of passengers' safety in case of fire.

  • PDF

화재 발생 지하철 역사에서의 여객 대피 해석에 관한 연구 (A Numerical Study on Passenger Evacuation in a Subway Station in Case of Fire Occurrence)

  • 김치겸;이성원;허남건;남성원
    • 설비공학논문집
    • /
    • 제22권8호
    • /
    • pp.509-514
    • /
    • 2010
  • A numerical simulation of passenger evacuation in a subway station was performed by coupling the passenger flow analysis and the fire simulation. The algorithm of the passenger flow analysis was based on a DEM (Discrete Element Method) using the potential map of the direction vector for each passenger. This algorithm was improved in the present study as to use finer grid smaller than a passenger in order to resolve detailed geometry of the station and to resolve the behavior of passengers in the bottleneck at the ticket gate considering the collision of passengers to a wall or with other passengers. In the fire simulation, the CO distribution predicted by using CFD was used to take into account the effect of toxic gases on the passengers' mobility. The methodology proposed in the present study could be used in designing safer subway station in case of fire occurrence.