• Title/Summary/Keyword: Railway Braking Systems

Search Result 49, Processing Time 0.03 seconds

Are Flywheels Right for Rail?

  • Read, M.G.;Smith, R.A.;Pullen, K.R.
    • International Journal of Railway
    • /
    • v.2 no.4
    • /
    • pp.139-146
    • /
    • 2009
  • Vehicle braking in non-electrified rail systems wastes energy. Advanced flywheel technology presents a way to capture and reuse this braking energy to improve vehicle efficiency and so reduce the operating costs and environmental impact of diesel trains. This paper highlights the suitability of flywheels for rail vehicle applications, and proposes a novel mechanical transmission system to apply regenerative braking using a flywheel energy storage device. A computational model is used to illustrate the operation and potential benefits of the energy storage system.

  • PDF

A Study on the Brake Regulation Point to Obey Velocity Limits for Entering Speed Restriction Regions in the Distance to Go System (Distance to Go System에서 속도제한 구간 진입 시 속도준수를 위한 제동제어 시점에 관한연구)

  • Kim, Tae-Kyu;Lee, Jong-Woo
    • Journal of the Korean Society for Railway
    • /
    • v.18 no.5
    • /
    • pp.426-438
    • /
    • 2015
  • Train speed controlling systems are now changing from wayside systems to onboard signaling systems. Locomotive engineers refer to wayside markers to decide on a braking point when the train speed appears to be lower than the current speed. However, in the onboard signaling systems that have been installed recently, the braking point is not determined by the wayside signal but by an onboard value. In this paper, we studied braking points and methods for deciding on such points by engineers using the onboard systems. An optimized braking point is proposed via simulation of decelerating velocity to control the velocity in the signaling system through a predefined point; Gaussian distributions are used to simulate the actual situation. We estimated and demonstrated how to obtain braking parameters in order to satisfy the interval of permitted error.

Characteristic Test of the Electro Mechanical Brake Actuator for Urban Railway Vehicles (도시철도용 전기기계식 제동장치의 특성시험)

  • Kim, Min Soo;Oh, Seh Chan;Kwon, Seok Jin
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.33 no.7
    • /
    • pp.535-540
    • /
    • 2016
  • The braking device in railway vehicles decelerates or stops the train by dissipating the thermal energy converted from kinetic energy into the air. Therefore, the brake system is crucial for safety. In this paper, we performed a study on an electromechanical brake actuator using an electrical motor as an alternative to pneumatic air cylinders to reduce the idle running time in braking, which subsequently increases braking distance, and to ensure reliable response characteristics. Especially, to analyze the response characteristics of the electromechanical brake actuator, we measure the delay time, response time and power consumption compared to the air cylinder. It is confirmed that the electromechanical brake actuator can reduce reaction time by 0.1 seconds (Braking Action) and 0.46 seconds (Brake Release) compared to the air cylinder.

Optimization of longitudinal viscous dampers for a freight railway cable-stayed bridge under braking forces

  • Yu, Chuanjin;Xiang, Huoyue;Li, Yongle;Pan, Maosheng
    • Smart Structures and Systems
    • /
    • v.21 no.5
    • /
    • pp.669-675
    • /
    • 2018
  • Under braking forces of a freight train, there are great longitudinal structural responses of a large freight railway cable-stayed bridge. To alleviate such adverse reactions, viscous dampers are required, whose parametric selection is one of important and arduous researches. Based on the longitudinal dynamics vehicle model, responses of a cable-stayed bridge are investigated under various cases. It shows that there is a notable effect of initial braking speeds and locations of a freight train on the structural responses. Under the most unfavorable braking condition, the parameter sensitivity analyses of viscous dampers are systematically performed. Meanwhile, a mixing method called BPNN-NSGA-II, combining the Back Propagation neural network (BPNN) and Non-Dominated Sorting Genetic Algorithm With Elitist Strategy (NSGA-II), is employed to optimize parameters of viscous dampers. The result shows that: 1. the relationships between the parameters of viscous dampers and the key longitudinal responses of the bridge are high nonlinear, which are completely different from each other; 2. the longitudinal displacement of the bridge main girder significantly decreases by the optimized viscous dampers.

Risk Assessment for Pneumatic Braking of EMU (철도차량 제동장치의 위험도 평가)

  • Lee, Sung-Kwun;Kim, Jong-un;Koo, Jeong-Seo
    • Journal of the Korean Society of Safety
    • /
    • v.30 no.5
    • /
    • pp.114-122
    • /
    • 2015
  • FMEA and FTA have been widely applied to the safety studies for railway systems respectively. But it would be more effective to use these two methods at a same time because these are complementary. This article suggests a FMEA-FTA combined analysis technique to evaluate the risk for railway systems. A FMEA-FTA combined risk evaluation model and process are proposed and a case study is dealt with for PBU(Pneumatic Breaking Unit), a major subsystem of a railway vehicle.

Probabilistic Braking Performance Analysis for Train Control System (열차제어시스템을 위한 확률적 제동성능분석)

  • Choi, Don Bum
    • Journal of The Korean Society For Urban Railway
    • /
    • v.6 no.4
    • /
    • pp.319-326
    • /
    • 2018
  • The safety interval to prevent collision between trains in a train control system is based on the braking distance according to the emergency braking of the train. The evaluation of the braking performance is based on the longitudinal train dynamics or the commissioning test in the test track, but since the conditions such as the weakening of the adhesion coefficient between the wheel and rail can not all be considered, these conventional methods are not sufficient to design of the train control systems. Therefore, in this study, the Monte Carlo Method (MCM) which can consider various environments is used to analyze braking performance and limitations. The braking model is based on the air braking used in the emergency braking and is modeled to take into account the braking pressure, efficiency, friction coefficient, adhesion condition, and vehicle mass distribution. It is confirmed that braking performance can be improved by controlling the quality of braking device. In addition, the change of the braking performance was confirmed according to the vehicle constituting the train. The results of this study are expected to be used as basic information for designing safety clearance for the train control systems and as a basis for improving the braking performance of railway vehicles.

A Scale-down Simulator for High-speed Railway Train (고속전철 모의시험 장치)

  • Ryoo, Hong-Je;Woo, Myung-Ho;Kim, Jong-Soo;Rim, Geun-Hie;Won, Chung-Yuen
    • Proceedings of the KIEE Conference
    • /
    • 2000.07b
    • /
    • pp.1140-1142
    • /
    • 2000
  • This paper describes a down-scaled model for a high-speed railway train. The propulsion system of simulator consists of four line-side converters four induction motors driven by two inverters, an eddy current braking system, two dynamic braking systems. The control algorithm of traction and braking including anti-skid control can be developed using the simulator. Simulator design procedure. control algorithm and some experimental waveforms are presented in this paper.

  • PDF

Design an Anti-Skid System using Fuzzy Model-Based Controller (퍼지 모델 기반 제어기를 이용한 안티 스키드 시스템의 설계)

  • Lee, Sung-Ho;Kim, Young-Guk;Kim, Seog-Won;Park, Jin-Bae
    • Proceedings of the KSR Conference
    • /
    • 2006.11b
    • /
    • pp.1276-1281
    • /
    • 2006
  • In general, the wheel-skid prevention of braking system is very important in modern railway applications. This is because wheel-skid can lead to an increase in noise and vibration from wheels with flat points, as well as an increased braking distance. However conventional anti-skid control has problems because wheel adhension and skid characteristics are very difficult nonlinear systems and time consuming to accurately model. In this paper, we design a fuzzy controller using a model of relation between ahdension and braking force, we show that anti-skid fuzzy controller has a very good performance, performing better than the previous conventional controller.

  • PDF

A Study on Establishment of Signaling Systems to Speed up Conventional Railway (철도 고속화에 따른 단계별 신호시스템 구축방안 연구)

  • Jeong, Rag-Kyo;Yoon, Young-Ki;Kim, Baek-Hyun
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.60 no.9
    • /
    • pp.1715-1720
    • /
    • 2011
  • Studies suggested an increase in the competitiveness and roles of mainline railways like speed and accessibility improvement, as a fundamental direction of the National Transport Network Plan. At this point, topics presented especially for strengthening the role of human and environment centered transportation: as to the greatly improved speed competitiveness, there are an operational speed above 180km/h ~ 200km/h and traveling within 2 ~ 3 hours among big cities. As to accessibility improvement, there are accessibility to main railway stations within 30 minutes, and the improvement of accessibility, safety, eco-friendliness, amenity etc. As a part of these suggestions, field specific plans were proposed for the establishment of expressed mainline railway network in Korea such as train's, civil structures, trolley lines etc. In this paper we analyzed the conventional lines and systems to figure out whether to change details in terms of H/W of signaling system. Additionally, we reviewed the compatibility or difference of signalling system depending on train's speed. With this result, we deduced the number of virtual blocks specific to the speed of 180km/h, 200km/h and 230km/h, which were showed for the speed improvement considering each variable like blocks, braking distance etc. In this way, we suggested the railway signal system establishment plan considering safety operation.

Train Performance Simulation and Evaluation for Korea High Speed Train (한국형 고속전철 개발열차 열차성능해석 및 평가)

  • 이태형;박춘수;신중린
    • Journal of the Korean Society for Railway
    • /
    • v.7 no.2
    • /
    • pp.120-124
    • /
    • 2004
  • Computer aided simulation is an essential part in planning, design, and operation of railway systems. To determine the adequate performance and specification of railway system, it is necessary to calculate train performances such as distance, speed, power during train's running. This paper presents result of train performance simulation using the program that developed for Korea high speed train. To verify result of simulation, we have compared that with experiment data.