• Title/Summary/Keyword: Railway Vehicle

Search Result 1,551, Processing Time 0.024 seconds

Development of Life Cycle Cost Estimation Software on the Aspect of Maintenance Strategies (유지보수관점에서의 수명주기비용예측 소프트웨어 개발)

  • Jun, Hyun-Kyu;Kim, Jae-Hoon;Kim, Jong-Woon;Park, Jun-Seo
    • Proceedings of the KSR Conference
    • /
    • 2007.11a
    • /
    • pp.777-783
    • /
    • 2007
  • Life cycle costing is one of the most effective cost approaches when we choose a solution from series of alternative so the least long-term cost ownership is achieved. Life cycle costing in railway industry has been focused on the prediction of investment for railway vehicles. But in today, the life cycle cost, LCC, prediction on the aspect of operation and maintenance cost through whole life cycle is highly necessary. In this paper, we present a strategy for the development of life cycle cost estimation software on the aspect of maintenance strategies of railway vehicle. For this purpose, we suggested a structure of LCC software based on the UNIFE LCC model. And we developed a pilot version of software to evaluate the LCC model that we suggested for railway vehicle. We performed LCC analysis on the brake module of metro vehicle in case study and concluded that the software and model developed in this research could enough to support engineers in choosing better cost effective solutions from many alternatives.

  • PDF

Cost Reduction of Construction of Bridges for the High-Speed EMU (동력분산형 고속철도의 교량형식에 따른 교량건설비용 저감방안 연구)

  • Lee, Tae-Gyu;Kim, Hye-Uk
    • Proceedings of the KSR Conference
    • /
    • 2008.06a
    • /
    • pp.1195-1200
    • /
    • 2008
  • The railway bridge design specification used in our country at present, is reflected results that take into account link between vehicle and roadbed according to decision of TGV vehicle style in 1994, and executes design verification. Hereafter, the particular loading condition and the design speed of the high-speed EMU that is recognized to the next generation of high speed railway, are plain difference with TGV vehicle style decided in 1994. The effect that these load and design speed get in roadbed, especially superstructure, displays difference with the existent high speed railway. The goal of this study is to choose the suitable bridge type, and to reduce the construction cost for the next generation of railway, i.e., the high-speed EMU.

  • PDF

Global warming effect Comparison of each material for railway vehicle (철도차량 차체재료별 온실가스발생량 비교)

  • Lee, Cheul-Kyu;Kim, Yong-Ki;Phirada, Pruitichaiwiboon
    • Proceedings of the KSR Conference
    • /
    • 2009.05a
    • /
    • pp.219-222
    • /
    • 2009
  • Green ocean is one of the main issues internationally. Most governments are leading the role in boosting the economy through creating new green market and establishing system of coping with increasing international environmental regulation. Green ocean, which is a solution for the environmental issue of global warming, is applied throughout the industry. Domestic transportation industry including railway is also developing technology for creating green ocean. Transportation must decrease energy consumption at running stages because it shows high environmental loads expecially on using stages during its life cycle. Therefore, There are some tries for developing technologies; new engine through alternative energies, hybrid and lightweight. Railway transportation can not be exception. it is intended for this paper to suggest the direction of manufacturing environmentally friendly railway vehicle through the global warming effect evaluation of several materials being applied to vehicle and comparison of the results.

  • PDF

An Experimental Study on Validation of Nonlinear Critical Speed (비선형 임계속도 검증을 위한 실험적 연구)

  • 정우진;김성원
    • Journal of the Korean Society for Railway
    • /
    • v.3 no.1
    • /
    • pp.12-18
    • /
    • 2000
  • This paper addresses the experimental study on the nonlinear critical speed and the validity of simple prediction formulation. The experiment on nonlinear critical speed is carried out using roller rigs, which has been impossible on track because of a possibility of an accident. In addition, experiment for a bogie is performed to check the difference in modeling a full railway vehicle and a bogie. It is found that nonlinear critical speed proves to be an inherent phenomenon of a railway vehicle itself and the difference of test results between a full railway vehicle and a bogie is comparatively negligible. Finally. the accuracy of simple prediction formulation for outbreak velocity and response frequency in hunting is investigated.

  • PDF

Effect of nonlinearity of fastening system on railway slab track dynamic response

  • Sadeghi, Javad;Seyedkazemi, Mohammad;Khajehdezfuly, Amin
    • Structural Engineering and Mechanics
    • /
    • v.83 no.6
    • /
    • pp.709-727
    • /
    • 2022
  • Fastening systems have a significant role in the response of railway slab track systems. Although experimental tests indicate nonlinear behavior of fastening systems, they have been simulated as a linear spring-dashpot element in the available literature. In this paper, the influence of the nonlinear behavior of fastening systems on the slab track response was investigated. In this regard, a nonlinear model of vehicle/slab track interaction, including two commonly used fastening systems (i.e., RFFS and RWFS), was developed. The time history of excitation frequency of the fastening system was derived using the short time Fourier transform. The model was validated, using the results of a comprehensive field test carried out in this study. The frequency response of the track was studied to evaluate the effect of excitation frequency on the railway track response. The results obtained from the model were compared with those of the conventional linear model of vehicle/slab track interaction. The effects of vehicle speed, axle load, pad stiffness, fastening preload on the difference between the outputs obtained from the linear and nonlinear models were investigated through a parametric study. It was shown that the difference between the results obtained from linear and nonlinear models is up to 38 and 18 percent for RWFS and RFFS, respectively. Based on the outcomes obtained, a nonlinear to linear correction factor as a function of vehicle speed, vehicle axle load, pad stiffness and preload was derived. It was shown that consideration of the correction factor compensates the errors caused by the assumption of linear behavior for the fastening systems in the currently used vehicle track interaction models.

A Study on Principles for Safe Driving of the Urban Railway Train (도시철도 열차의 안전 운전원칙에 관한 연구)

  • Jeon, Young-Seok;Ahn, Seung-Ho;Chung, Kwang-Woo;Kim, Jae-Moon;Kim, Chul-Su;Chung, Jong-Duk;Jeong, Rag-Gyo
    • Proceedings of the KSR Conference
    • /
    • 2009.05a
    • /
    • pp.628-635
    • /
    • 2009
  • To assure the safety of urban railway train, it is necessary to observe the specified driving principles under an essential condition during running on tracks. These principles arises from a great deal of experience for a long time and include safe distance between trains, the railway signaling, block system, regular block of the highest priority and driving prohibition of simple railway vehicle in the main track, etc. Therefore, it is important to apply these principles to domestic urban railway driving regulations and railway vehicle driving regulations. However, domestic urban railway administrator established his own operation rules within the regulation. In this study, domestic urban railway administration's own rules are examined and the appropriate driving regulation on the safe driving principles is proposed.

  • PDF

A Study on the Optimum Design of Railway Vehicle Suspension Characteristics (철도차량 현가특성의 최적설계에 관한 연구)

  • 조동현;임진수
    • Journal of the Korean Society for Railway
    • /
    • v.2 no.2
    • /
    • pp.6-12
    • /
    • 1999
  • In this study, the most important suspension characteristics of railway vehicle, such as primary and secondary stiffness, are optimized to maximize ride qualify. Critical speed, secondary suspension stroke oil tangent track and derailment coefficient on the maximum curvature, are selected as the performance constraints. Piecewise linear curving model is used to evaluate derailment coefficient where it is assumed that wheel/rail contacts occurs at tread or at idealized flange. The combined design procedure is used to optimize above design variables at the same time.

  • PDF

Aerodynamic interaction between static vehicles and wind barriers on railway bridges exposed to crosswinds

  • Huoyue, Xiang;Yongle, Li;Bin, Wang
    • Wind and Structures
    • /
    • v.20 no.2
    • /
    • pp.237-247
    • /
    • 2015
  • Wind tunnel experiments are used to investigate the aerodynamic interactions between vehicles and wind barriers on a railway bridge. Wind barriers with four different heights (1.72 m, 2.05 m, 2.5 m and 2.95 m, full-scale) and three different porosities (0%, 30% and 40%) are studied to yield the aerodynamic coefficients of the vehicle and the wind barriers. The effects of the wind barriers on the aerodynamic coefficients of the vehicle are analyzed as well as the effects of the vehicle on the aerodynamic coefficients of the wind barriers. Finally, the relationship between the drag forces on the wind barriers and the aerodynamic coefficients of the vehicle are discussed. The results show that the wind barriers can significantly reduce the drag coefficients of the vehicle, but that porous wind barriers increase the lift forces on the vehicle. The windward vehicle will significantly reduce the drag coefficients of the porous wind barriers, but the windward and leeward vehicle will increase the drag coefficients of the solid wind barrier. The overturning moment coefficient is a linear function of the drag forces on the wind barriers if the full-scale height of the wind barriers $h{\leq}2.5m$ and the overturning moment coefficients $C_O{\geq}0$.

Wheelset Steering Angle of Railway Vehicle according to Primary Suspension Property (철도차량 1차현가 특성에 따른 윤축 조향각 성능 분석)

  • Hur, Hyun Moo;Ahn, Da Hoon;Park, Joon-Hyuk
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.32 no.7
    • /
    • pp.597-602
    • /
    • 2015
  • In this paper, we studied the steering performance of wheelset with primary suspension characteristics of railway vehicle. We carry out dynamic analysis and experimental study for the vehicle models which are different primary suspension characteristics. The steering angle of a vehicle model (Case 1) operating in domestic subway lines is insufficient compared with an objective steering angle for curved track. And the steering angle of a vehicle model (Case 2) with improved self-steering performance of wheelset is a little improved compare to previous vehicle model. But also Case 2 model is still insufficient compared with an objective steering angle and has its limit in steering performance. So to overcome this limit of steering performance of passive type railway vehicle, an active steering technology is being developed. In case of vehicle model with active steering system, the steering performance is improved remarkably compared to passive type vehicle model.

Study on the Dynamic Behavior Characteristics due to the Unbalance High Speed Railway Vehicle Wheel (고속철도차량용 차륜 불평형에 의한 동적 거동 특성 연구)

  • Lee, Seung-Yil;Song, Moon-Shuk
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.7
    • /
    • pp.175-181
    • /
    • 2016
  • This occurs when the unbalanced rotating body is inconsistent with the mass center line axis geometric center line. Wheelsets are assembled by a single axle with two wheels and a rotating body of a running railway vehicle. Owing to non-uniformity of the wheel material, the wear, and error of the wheel and axle assembly may cause an imbalance. Wheelsets will suffer the effects of vibrations due to the unbalanced mass, which becomes more pronounced due to the thin and high-speed rotation compared to the shaft diameter This can affect the driving safety and the running behavior of a rail car during high-speed running. Therefore, this study examined this unbalanced wheel using a railway vehicle multibody dynamics analysis tool to assess the impact of the dynamic VI-Rail movement of high-speed railway vehicles. Increasing the extent of wheel imbalance on the analysis confirmed that the critical speed of a railway vehicle bogie is reduced and the high-speed traveling dropped below the vehicle dynamic behaviour. Therefore, the adverse effects of the amount of a wheel imbalance on travel highlight the need for management of wheel imbalances. In addition, the static and dynamic management needs of a wheel imbalance need to be presented to the national rail vehicles operating agency.