• Title/Summary/Keyword: Railroad-tunnel

Search Result 234, Processing Time 0.031 seconds

Web-based Monitoring System for a Railroad Tunnel by Wireless Internet (무선인터넷을 이용한 웹 기반 원격지 철도터널의 계측관리)

  • Lho, Byeong-Cheol;Kim, Jong-Woo;Kim, Jeong-Hoon
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.10 no.3
    • /
    • pp.159-164
    • /
    • 2006
  • Mobile communication with wireless modem can be powerful tool in web-based structural health monitoring system in which power and communication method are crucial points. In this study, the major reasons of side cracks in tunnel lining are studied by FEM analysis. In addition, a web-based monitoring system using mobile communication with wireless modem is applied to the tunnel structure to monitor the long term behavior of the side cracks. The field application shows that CDMA is useful method for structural health monitoring system which installed long distance away.

Measurement and Analysis for the Upper Side Flow Boundary Layer of a High Speed Train Using Wind Tunnel Experiments with a Scaled Model (축소모형 풍동시험을 이용한 고속열차의 유동 상부경계층 측정 및 분석)

  • Oh, Hyuck Keun;Kwon, Hyeok-bin;Kwak, Minho;Kim, Seogwon;Park, Choonsoo
    • Journal of the Korean Society for Railway
    • /
    • v.19 no.1
    • /
    • pp.11-19
    • /
    • 2016
  • The flows around a high speed train are very important because they could affect the aerodynamic characteristics such as drag and acoustic noise. Especially the boundary layer of flows could represent the characteristic of flows around the high speed train. Most previous studies have focused on the boundary layer region along the train length direction for the side of the train and underbody. The measurement and analysis of the boundary layer for the roof side is also very important because it could determine the flow inlet condition for the pantograph. In this study, the roof boundary layer was measured with a 1/20 scaled model of the next generation high speed train, and the results were compared with full-scaled computational fluid dynamics results to confirm their validity. As a result, it was confirmed that the flow inlet condition for the pantograph is about 85% of the train speed. Additionally, the characteristics of the boundary layer, which increases along the train direction, was also analyzed.

A Comparative Study on Groundwater Flow Depending on Conceptual Models in Tunnel Modeling (터널모델링시 개념모델에 따른 지하수 유동 예측결과 비교연구)

  • 최미정;이진용;구민호;이강근
    • The Journal of Engineering Geology
    • /
    • v.14 no.2
    • /
    • pp.223-233
    • /
    • 2004
  • When the groundwater outflow occurs due to tunnel excavation during the road and railroad construction, depletion of groundwater resources, deficiency in the living and agricultural waters, and changes in the surface water flux are expected. The MODFLOW is a most commonly used and three dimensional finite difference model to predict changes in the groundwater system due to the tunnel construction. A conceptual model is one of the most important elements for the proper modeling results. Essential information will not be extracted from an oversimplified conceptual model while excess time and resources with much field data are required for the very complicated one. This study presented a comparison of the modeling results depending on some conceptual models and discussed construction of the efficient conceptual model for reasonable and realistic results in the tunnel modeling.

An Experimental Study on the Effect of Ventilation Velocity on the Burning Rate in Longitudinal Ventilation Tunnel Fires (종류식 배연 터널 화재시 배연속도가 연소율에 미치는 영향에 대한 실험적 연구)

  • Yang Seung-Shin;Ryou Hong-Sun;Choi Young-Ki;Kim Dong-Hyeon
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.17 no.10
    • /
    • pp.914-921
    • /
    • 2005
  • In this study, the 1/20 reduced-scale experiment using Froude scaling were conducted to investigate the effect of longitudinal ventilation velocity on the burning rate in tunnel fires. The methanol pool fires with heat release rate ranging from 2.02 kW to 6.15 kW and the n-heptane pool fires with heat release rate ranging from 2.23 kW to 15.6 kW were used. The burning rate of fuel was obtained by measuring the fuel mass at the load cell. The temperature distributions were observed by K-type thermocouples in order to investigate smoke movement. The ventilation velocity in the tested tunnel was controlled by inverter of the wind tunnel. In methanol pool fire, the increase in ventilation velocity reduces the burning rate. On the contrary in n-heptane pool fire, the increase in ventilation velocity induces large burning rate. The reason for above conflicting phenomena lies on the difference of burning rate. In methanol pool fire, the cooling effect outweighs the supply effect of oxygen to fire plume, and in n-heptane pool vice versa.

Track Measurements of Strong Wind under High-speed Train to Investigate Ballast-flying Mechanism (자갈비산 메커니즘 연구를 위한 고속철도차량 하부유동 계측)

  • Kwon H.B.;Park C.S.;Nam S.W.;Ko T.H.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.06a
    • /
    • pp.369-373
    • /
    • 2005
  • To investigate the mechanism of ballast-flying phenomena by strong wind induced by high-speed trains, wind velocity in the vicinity of the track has been measured using 16-channel Kiel-probe array and detailed flow structure near the surface of the track has been analyzed. The position at which the underflow fully develop has been examined in order to assess the driving force of the turbulent flow under train and the results yields that the turbulent flow owing to the cavity of the inter-car as well as the friction force at the underbody of the train is the main reason of the strong wind under high-speed train. The preceding wind tunnel test results has been introduced to assess the probability of ballast-flying during the passage of the high-speed train by comparing the results from field-measuring. The results shows that when the G7 train as well as the KTX train runs at 300km/h, about 25m/s wind gust is induced just above the tie and the probability for small ballast under 50g to fly is about 50% when it is on the tie. If the G7 train runs at 350km/h, the wind gust just above the tie increases to 30m/s, therefore more radical countermeasure seems to be needed.

  • PDF

Assessment of the Running Resistance of a High-speed Train Using a Coasting Test (타행 시험을 이용한 고속열차 주행저항 평가)

  • Kwon, Hyeok-Bin;Kim, Seogwon;Oh, Hyuck Keun
    • Journal of the Korean Society for Railway
    • /
    • v.17 no.3
    • /
    • pp.165-170
    • /
    • 2014
  • The resistance to motion of the Korean next-generation high-speed train (HEUM-430X) was assessed on the basis of 12 coasting test runs at coasting speeds up to approximately 380km/h. Two different methods, a linear regression method and a time-integral method, were employed to calculate decelerations from the time-velocity data and the time-distance data, respectively, and an equation of resistance to motion was devised from the deceleration data calculated at each time section. The effect of an improvement of the aerodynamic shape on the resistance to motion was investigated, with the results showing that the running resistance was reduced by about 15% due to these improvements. An increase of approximately 28% of the running resistance was also noted when running in a tunnel relative to running through an open field.

Aerodynamic Drag Reduction in Cylindrical Model Using DBD Plasma Actuator (DBD 플라즈마 구동기를 이용한 원통모델의 공기저항저감)

  • Lee, Changwook;Sim, Ju-Hyeong;Han, Sunghyun;Yun, Su Hwan;Kim, Taegyu
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.19 no.1
    • /
    • pp.25-32
    • /
    • 2015
  • Dielectric barrier discharge (DBD) plasma actuator was designed to reduce aerodynamic drag in a cylindrical model and wind tunnel test was performed at various wind velocities. In addition, computational fluid dynamics (CFD) analysis and flow visualization were used to investigate the effect of the plasma on the flow stream in the cylinderical model. At low wind velocity, the plasma actuator had no effects because flow separation did not appear. The aerodynamic drag was reduced by 14% at 14 m/s and by 27% at 17 m/s, respectively. It was confirmed by CFD analysis and flow visualization that the DBD plasma actuator decreased in pressure difference around the cylindrical model, thus decreasing the magnitude of wake vortex.

The Correlation between Radon (Rn222) and Particulate Matters (PM10, PM2.5, PM1.0) in Subway Tunnel in Seoul.

  • Versoza, Michael;Park, Duckshin
    • Particle and aerosol research
    • /
    • v.13 no.2
    • /
    • pp.87-95
    • /
    • 2017
  • Radon ($Rn^{222}$) is a radioactive gas and is found at high concentrations underground. Investigations were done in many years specifically on public transportations such as in the subway stations, concourses and platforms for these are located underground areas. This study correlates the $Rn^{222}$ concentrations with the Particulate Matter (PM) concentration for the gas could be attached or trapped inside these particles. It was done on the opening subway tunnel of Miasageori Station going to Mia Station (Line 4) last August 2016. Based on the result, the $Rn^{222}$ were more influenced on the mass ratio (%) of PM present in the air instead of its mass concentration (${\mu}g/m^3$). As the $PM_{10}$ mass ratio increases ($42.32{\pm}1.03%$) during morning rush-hours, radon starts to increase up to $0.97{\pm}0.03pCi/L$. But during the afternoon $Rn^{222}$ concentrations decreased while the composition were stable at $22.96{\pm}3.0%$, $39.04{\pm}0.6%$ and $38.01{\pm}0.3%$ in $PM_1$, $PM_{2.5}$ and $PM_{10}$ respectively. It was then assumed that it could be the composition of the morning hours of the station were influencing the concentration of the radon.

A Case Study on the effects of Elephant Foot Method considering the rate of Changes in Tunnel Cross Section (터널 단면적 변화를 고려한 각부보강 영향성 평가)

  • Lee, Gil-Yong;Oh, Hyeon-Mun;Cho, Kye-Hwan;Oh, Jeong-Ho;Kim, Jong-Ju;Kim, Yong-Seong
    • Journal of the Korean Geosynthetics Society
    • /
    • v.17 no.1
    • /
    • pp.111-118
    • /
    • 2018
  • In case of excavation of the tunnel under weak ground conditions, such as fault zone, leg pile reinforcement with the purpose of suppressing tunnel crown settlement and side wall displacement is commonly applied. There are convergence, crown settlement, leg settlement, and the axial force of leg as a main factor for confirming the safety of support considering the installation angle and length of leg pile reinforcement according to the increase in rate of change of tunnel cross-section. In particular, the influence of right corner settlement, among variables for safety confirmation during excavation, has been analyzed as the dominant factor in the most important priority management showing larger displacement tendency than the increase in rate of the cross-section. And, it was analyzed that the occurrence tendency of axial force on leg pile reinforcement showed the influence of behavior according to the friction support concept mechanism of the pile reinforcement rather than the increase in rate of tunnel cross-section, as it showed a small increase compared to the increase rate of the tunnel cross-section which did not show a great correlation from the viewpoint of the change of the axial force by the length of each leg pile reinforcement with regards to the change in rate of increase in tunnel cross-section. If a certain length of the leg pile reinforcement is selected based on the above grounds, even if the cross-section of the tunnel in poor ground condition is somewhat larger, it has been proved to be a more reasonable method considering the workability and economical efficiency by not extending the length of the leg pile reinforcement by force.

A numerical study of the influence of rock mass classes boundary on tunnel stability (암반 등급 경계가 터널 안정성에 미치는 영향에 관한 수치해석적 연구)

  • Kim, Gyeomyeon;Jung, Chanmook;Lee, Yongjun
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.21 no.6
    • /
    • pp.825-835
    • /
    • 2019
  • When the tunnel is designed, the ground is classified into several grades and the corresponding support system is applied according to the support pattern table. However, a simple pattern application based on rock grade does not take into account the longitudinal stress transitions occurring at rock grade boundaries. In this study, three-dimensional numerical analysis was performed to estimate the stress change in the longitudinal rock grade change of NATM tunnel, and the influence zone of load transfer was investigated using the influence line and trend line. As a result, the downward change of rock grade in the direction of tunnel excavation occurs in the range of 0.35~0.7D from low-strength rock to high-strength rock around the grade change boundary. It is necessary to apply a downward pattern of about 1.0D to the safety direction in consideration of the influence range of 0.35D to 0.7D.