• Title/Summary/Keyword: Railroad Crossing

Search Result 83, Processing Time 0.021 seconds

A Case Study on Construction of Front-Jacking method in Daejeon E.W. perforate Road Project (대전 동서관통도로 Front-Jacking공법 시공사례)

  • Kim Yong-Il;Hwang Nak-Yeon;Cha Jong-Whi;Jang Sung-Wook;Lee Nai-Yong
    • Proceedings of the KSR Conference
    • /
    • 2005.05a
    • /
    • pp.646-654
    • /
    • 2005
  • The crossing construction under railroad have two methods which are cut and cover and trenchless method. First, cut and cover method is an extremely limited method concerning non-running time. Whereas, trenchless method is free from restriction such as train speed and running time, and has the strong points of safe and rapid construction. Front Jacking method, one of the trenchless methods, is frequently applied recently due to its stability during construction and vantage of assuring schedule reliability. The procedure is that after minimizing interlocking friction with structure and earth pressure due to jacking the small steel tube, pulling the precast box manufactured at the field in the ground using PC strand and hydraulic Jack. This method is able to be applied regardless of section size and length of box and condition of soil. And that is also pro-environmental. This paper presents the case of Daejeon E. W. perforate Road Project applied with the Front Jacking method.

  • PDF

A Study on Relationship between Track Impact Factor and Track Support Stiffness of Turnout System on Urban Transit (도시철도 분기기 궤도구조의 궤도지지강성과 궤도충격계수의 상관관계에 관한 연구)

  • Choi, Jung-Youl;Park, Jong-Yoon;Lee, Kyu-Yong;Chung, Jee Seung
    • The Journal of the Convergence on Culture Technology
    • /
    • v.6 no.2
    • /
    • pp.461-466
    • /
    • 2020
  • In this study, the relationship between the track support stiffness and the track impact factor for a sleeper floating track and a turnout system with wood ties currently employed in Korean urban transit was assessed by performing field tests using actual vehicles running along the service lines. Field tests were performed on four track systems (i.e., sleeper floating track, and point, lead and crossing sections of turnout system). The theoretically designed track impact factor and track support stiffness were compared with the corresponding track impact factor and track support stiffness measured through field tests for the target tracks on the service line. The track impact factor for the service line appeared to increase with the deviation of track support stiffness according to vehicle driving direction; therefore, it was inferred that the deviation of track support stiffness between each track section directly affected the track impact factor.

Field Test and Performance Verification of On-board Oriented Train Control System (차상중심 열차제어시스템의 현장시험을 통한 성능검증)

  • Baek, Jong-Hyen
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.16 no.8
    • /
    • pp.5513-5521
    • /
    • 2015
  • There is an operational efficiency problem about wayside equipment applied to the domestic low-density branch as the equipment has been installed and operated similarly in the mainline. On-board oriented train control system, which has been developed for train safety and operation efficiency, ensures safe train operation without expensive ground control signal devices. Such system consists of on-board control system, wayside control system, and local control system. In this paper, the details of tests such as suitability test, communication test, and interface test are described by installing the on-board control system and wayside control system in field. Installation tests include checking power, voltage, cable connection, LED status, etc. Field applicability of the developed system is also verified through the dynamic operation tests with diverse scenarios, which are performed on the virtual line similar to the real environment including switch machine and level crossing gate. Dynamic operation tests were conducted for total 7 scenarios, and several tests were repeated for each scenario. The elapsed time for each operation was computed by analyzing main process log, and we could check that each operation was accomplished within several seconds. Furthermore, the developed system was verified through field test with an accredited institute, and testing certificates were issued.