• Title/Summary/Keyword: Rail wear

Search Result 115, Processing Time 0.017 seconds

A Study on Inequality Rate of Lubrication for Motor-driven Cylinder Lubricator by the Electronically Controlled Quill System Equipped with an Accumulating Distributor in a Large Two-stroke Diesel Engine (대형 2행정 디젤기관용 축압분배기 부착 전자제어식 퀼 시스템 모터구동 실린더 주유기의 주유 불균일률에 관한 연구)

  • Bae, Myung-Whan;Jung, Hwa;Bae, Chang-Hwan
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.20 no.3
    • /
    • pp.26-36
    • /
    • 2012
  • Minimizing the cylinder wear and the consumption rate of cylinder oil in a large two-stroke diesel engine is of great economic importance. A motor-driven cylinder lubricator for Sulzer RT-flex large two-stroke diesel engines developed by authors is in need of mounting a quill system to lubricate cylinder parts for a smooth operation. In order to apply the common-rail lubricating system to the developed cylinder lubricator as the second research stage, the mechanical quill system with a progressively quantitative distributor (M.D.S.) is improved in the electronically controlled quill system with an accumulating distributor (E.D.S.). In this study, the effects of lubricator motor speed, plunger stroke and cylinder back pressure on oil feed rate and inequality rate are experimentally investigated by applying E.D.S. to the developed cylinder lubricator. It is found that the oil feed rate of E.D.S. is higher than that of M.D.S. because of the increase of delivery speed and volume by changing the role of accumulator in the same experimental condition. It can be also shown that, in E.D.S., the inequality rate is decreased a little or hardly unchanged as the cylinder back pressure and plunger stroke is elevated, while the inequality rate increased in M.D.S.. The inequality rates of E.D.S. and M.D.S. are lowered as the lubricator motor speed is increased.

Optimization of Characteristics of Longitudinal Creepage for Running Stability on Sharp Curved Track (급곡선 주행 안정화를 위한 주행방향 크리피지 특성 최적화 연구)

  • Sim, Kyung-Seok;Park, Tae-Won;Lee, Jin-Hee;Kim, Nam-Po
    • Journal of the Korean Society for Railway
    • /
    • v.17 no.1
    • /
    • pp.19-27
    • /
    • 2014
  • Urban railway vehicles operate in downtown areas. Due to increases in the number of passengers and changes in the service plans, railway vehicles are expected to operate on sharp curved tracks. However, on these tracks, the running stability of the railway vehicles is significantly decreased and the creepage is increased. Creepage causes the wheel/rail to wear and vibration. Therefore, reducing the creepage helps ensure the running stability and can be beneficial for the environment and cost. In this paper, the longitudinal creepage is analyzed using a railway vehicle model on a sharp curved track. Furthermore, in order to minimize the problems when a railway vehicle runs on a sharp curved track, the characteristics of a bogie are optimized using response optimization.

A Study on the Daily Inspection Optimization of the Rolling Stocks (철도차량 일상검수 최적화에 관한 연구)

  • Kang, Byoung-Soo;Lee, Kang-In
    • Asia-Pacific Journal of Business Venturing and Entrepreneurship
    • /
    • v.7 no.4
    • /
    • pp.41-47
    • /
    • 2012
  • Railroad rolling stock has long service life and a lot of maintenance cost running on rail by wear and vibration. And it is very important to get optimization of maintenance. This paper want to analyze rolling stock maintenance situation of KORAIL and find out its improvement methods. Especially, the purpose of this paper is to adopt the most effective maintenance period and methods to daily inspection which needs many maintenance manpower in rolling stock. Rolling stock has self-diagnosis function using computer system and the quality of rolling stock has much improved these days but current daily inspection repeat for short period routinely and it is very ineffective. Therefore, the paper adopt improved daily inspection period reflecting the characteristics of rolling stock, and want to secure reliability of rolling stock and minimize maintenance cost.

  • PDF

Effect of the Pocket Depth on the Hammering Behavior of an Air Bearing Stage (포켓의 깊이가 공기 베어링 스테이지의 햄머링 현상에 미치는 영향)

  • Lee, Chun Moo;Kim, Gyu Ha;Park, Sang Joon;Hwang, Gyu-Jin;Park, Sang-Shin
    • Tribology and Lubricants
    • /
    • v.37 no.4
    • /
    • pp.129-135
    • /
    • 2021
  • An air-bearing stage uses externally pressurized air as the lubricant between the stage and the rail. The supporting force generated by the supplied air makes the stage rise and move smoothly with extremely low friction. Mechanical contacts rarely happen, the bearing surfaces do not produce wear particles, and dust is not generated. It also has the advantage of having low energy loss and high precision. Because of its advantages, an air-bearing stage is used in several types of machines that require high precision. In this article, the effect of the pocket depth on the hammering phenomena of the air bearing is studied. An analysis program is developed to calculate the dynamic behavior of the stage by solving the Reynolds equation between the stage and the guideway and the equations of motion on the stage. The acceleration, constant movement, and deceleration are applied to the stage. The stage is modeled as a five-degree-of-freedom system. In the course of the dynamic behavior, the hammering phenomena occur under some special conditions. The deeper the pocket, the more unstable the behavior of the stage, and air hammering occurs when it exceeds a certain depth. In addition, the higher the supply pressure, the more unstable the behavior of the stage. However, hammering occurs even with a shallow pocket depth. Other conditions that affect the hammering phenomena are calculated and discussed.

Characterization of Summertime Aerosol Particles Collected at Subway Stations in Seoul, Korea Using Low-Z Particle Electron Probe X-ray Microanalysis

  • Kim, Bo-Wha;Jung, Hae-Jin;Song, Young-Chul;Lee, Mi-Jung;Kim, Hye-Kyeong;Kim, Jo-Chun;Sohn, Jong-Ryeul;Ro, Chul-Un
    • Asian Journal of Atmospheric Environment
    • /
    • v.4 no.2
    • /
    • pp.97-105
    • /
    • 2010
  • A quantitative single particle analytical technique, denoted low-Z particle electron probe X-ray microanalysis (low-Z particle EPMA), was applied to characterize particulate matters collected at two underground subway stations, Jegidong and Yangje stations, in Seoul, Korea. To clearly identify the source of the indoor aerosols in the subway stations, four sets of samples were collected at four different locations within the subway stations: in the tunnel; at the platform; near the ticket office; nearby outdoors. Aerosol samples collected on stages 2 and 3 ($D_p$: $10-2.5\;{\mu}m$ and $2.5-1.0\;{\mu}m$, respectively) in a 3-stage Dekati $PM_{10}$ impactor were investigated. Samples were collected during summertime in 2009. The major chemical species observed in the subway particle samples were Fe-containing, carbonaceous, and soil-derived particles, and secondary aerosols such as nitrates and sulfates. Among them, Fe-containing particles were the most popular. The tunnel samples contained 85-88% of Fe-containing particles, with the abundance of Fe-containing particles decreasing as the distances of sampling locations from the tunnel increased. The Fe-containing subway particles were generated mainly from mechanical wear and friction processes at rail-wheel-brake interfaces. Carbonaceous, soil-derived, and secondary nitrate and/or sulfate particles observed in the underground subway particles likely flowed in from the outdoor environment by human activities and the air-exchange between the subway system and the outdoors. In addition, since the platform screen doors (PSDs) limit air-mixing between the tunnel and the platform, samples collected at the platform at the Yangjae station (with PSDs) showed a marked decrease in the relative abundances of Fe-containing particles compared to the Jegidong station (without PSDs).