• Title/Summary/Keyword: Rail volume

Search Result 107, Processing Time 0.018 seconds

A Study on Nozzle Flow and Spray Characteristics of Piezo Injector for Next Generation High Response Injection (차세대 고응답 분사용 피에조 인젝터의 노즐유동 및 분무특성에 관한 연구)

  • Lee Jin-Wook;Min Kyoung-Doug
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.30 no.6 s.249
    • /
    • pp.553-559
    • /
    • 2006
  • Most diesel injector, which is currently used in high-pressure common rail fuel injection system of diesel engine, is driven by the solenoid coil energy for its needle movement. The main disadvantage of this solenoid-driven injector is a high power consumption, high power loss through solenoid coil and relatively fixed needle response's problem. In this study, a prototype piezo-driven injector, as a new injector mechanism driven by piezoelectric energy based on the concept of inverse piezo-electric effect, has been designed and fabricated to know the effect of piezo-driven injection processes on the diesel spray structure and internal nozzle flow. Firstly we investigated the spray characteristics in a constant volume chamber pressurized by nitrogen gas using the back diffusion light illumination method for high-speed temporal photography and also analyzed the inside nozzle flow by a fully transient simulation with cavitation model using VOF(volume of fraction) method. The numerical calculation has been performed to simulate the cavitating flow of 3-dimensional real size single hole nozzle along the injection duration. Results were compared between a conventional solenoid-driven injector and piezo-driven injector, both equipped with the same micro-sac multi-hole injection nozzle. The experimental results show that the piezo-driven injector has short injection delay and a faster spray development and produces higher injection velocity than the solenoid-driven injector. And the predicted simulation results with the degree of cavitation's generation inside nozzle for faster needle response In a piezo-driven injector were reflected to spray development in agreement with the experimental spray images.

A Study on Spray and Combustion Characteristics of Biodiesel Blended Diesel Fuel in a Constant Volume Combustion Chamber (바이오디젤이 혼합된 디젤 연료의 분무 및 연소 특성에 관한 연구)

  • Suh, Hyun-Uk;Jeon, Chung-Hwan
    • Journal of Energy Engineering
    • /
    • v.24 no.1
    • /
    • pp.132-136
    • /
    • 2015
  • The objective of this study is to investigate the effect of biodiesel blending on spray and combustion characteristics. In order to this, blended fuels containing 0, 5, 20, 50, 100% biodiesel in weight fraction was injected via common rail to constant volume combustion chamber. As a result, spray cone angle decreased and the Sauter mean diameter increased because of the higher dynamic viscosity and density of biodiesel, however, it does not seemed that spray penetration was affected by these factors considerably. In the combustion experiment, ignition delay of biodiesel was shorter than that of diesel due to higher cetane number. And the peak value of heat release rate increased and the end of combustion was advanced owing to higher combustion efficiency cause by the characteristic of oxygenated fuel.

A Study on the Revitalization of Railway freight transportation Through forecasting of container volumes on Busan New & North port (신항과 북항의 철도물동량 예측에 따른 철도운송 활성화 방안에 관한 연구)

  • Cho, Sam-Hyun
    • Journal of Korea Port Economic Association
    • /
    • v.25 no.4
    • /
    • pp.131-146
    • /
    • 2009
  • The purpose of this study is to predict the railway cargo volume on Busan new-port and north-port, in order to revitalize railway transport. This paper is organized as follows. Section 1 presents the description of the objective and methods on this study. Section 2 presents the status of Railway Cargo volumes and Construction plan of railway facilities in Busan New port. Section 3 presents the Forecast Railway Cargo volume using a volume ratio, actual volume records and another predicted datas. Section 4 summarizes our conclusions and further research topics. Especially, korea faces enforcement of green Logistics policy. Modal shift to trail freight transportation is one of ways, but there are no more detail plans. so it need that a cooperation system in government department, a indirect subside policy shift to rail freight transportation from trucking for revitalization of Railway Freight transportation.

  • PDF

Engine performance and emission reduction characteristics of biodiesel blended diesel fuel in a passenger car diesel engine (바이오디젤 혼합연료를 적용한 승용디젤엔진의 성능 및 배출물 저감특성)

  • Jho, Shi Gie
    • Journal of Energy Engineering
    • /
    • v.23 no.3
    • /
    • pp.181-185
    • /
    • 2014
  • This paper describes the effect of canola biodiesel blended fuel on the combustion and emission characteristics in a four cylinder CRDI(Common-rail direct injection) diesel engine. In this study, using the biodiesel fuel(20%,40% of biodiesel-canola oil and 80%, 60% of ULSD(ultra low sulfur diesel) by volume ratio with change of engine speed and injection pressure. The experiment results of increasing biodiesel ratio fuel show that NOx emissions increased. However, soot emission were reduced BC fuels compared to ULSD. Soot emissions largely increased at low injection pressure.

Method for Measuring Absolute Position of a Yard Crane for Port Automation (항만 자동화를 위한 야드 크레인의 절대위치 측정 기법)

  • Chun T.W.;Kim K.M.;Lee H.H.;Kim H.G.;Nho E.C.
    • Proceedings of the KIPE Conference
    • /
    • 2003.07a
    • /
    • pp.439-445
    • /
    • 2003
  • Since 1960s. container shipping volume has increased dramatically and continuous on a trend of rapid growth, and so the number of containers handled at the port increases. In order to improve yard crane operating efficiency, the precise position measurement of the yard crane is important. This paper describes the method to measure the absolute position of yard crane using the output pulse of an encoder and infrared sensors. The crane position is calculated by counting the output pulse of an incremental encoder, which is mounted on the wheel in the crane. By the way, the wheel slippage on rail may cause some errors in crane position information obtained from encoder pulses, and the errors in the crane position information are compensated with infrared sensors. The performance of proposed method is verified on experimental results with the simulator of yard crane, the size of which is about 1/10 with the real crane.

  • PDF

Macroscopic Characteristics of Evaporating Dimethyl Ether(DME) Spray (Dimethyl Ether(DME)의 증발과 거시적 분무 특성)

  • Yu, Jun;Lee, Ju-Kwang;Bae, Choong-Sik
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.11 no.3
    • /
    • pp.58-64
    • /
    • 2003
  • Dimethyl Ether(DME) has been considered as one of the most attractive alternative fuels for compression ignition engine. Its main advantage in diesel engine application is high efficiency of diesel cycle with soot free combustion though conventional fuel injection system has to be modified due to the physical properties of DME. Experimental study of DME and conventional diesel spray employing a common-rail type fuel injection system with a 5-hole sac type injector was performed in a constant volume vessel pressurized by nitrogen gas. Spray cone angles and penetrations of the DME spray were characterized and compared with those of diesel. For evaluation of the evaporating characteristics of the DME, shadowgraphy technique employing an Ar-ion laser and an ICCD camera was adopted. Tip of the DME spray was formed in mushroom-like shape at atmospheric chamber pressure, which disappeared in higher chamber pressure. Spray tip penetration and spray cone angle of the DME became similar to those of diesel under 3MPa of chamber pressure. Higher injection pressure provided wider vapor phase area while it decreased with higher chamber pressure condition.

Effect of Pilot Injection on Combustion and Exhaust Emissions Characteristics in a Biodiesel Fueled Diesel Engine (바이오디젤 혼합연료를 적용한 커먼레일 디젤엔진에서 파일럿 분사에 따른 연소 및 배기 특성)

  • Jeong, Kyu-Soo;Lee, Dong-Gon;Roh, Hyun-Gu;Lee, Chang-Sik
    • Journal of the Korean Society of Combustion
    • /
    • v.16 no.4
    • /
    • pp.1-7
    • /
    • 2011
  • The purpose of this study was to analyze the effect of pilot injection strategy on the combustion and emissions characteristics in a four cylinder common-rail direct injection diesel engine fueled with biodiesel(soybean oil) blend. The tested fuel was mixed of 20% biodiesel and 80% ULSD(Ultra low sulfur diesel) by volume ratio. The experiments were performed under two load conditions, and results were compared with those of single injection. The experimental results showed that the ignition delay of BD20 was shorter than compared to that of ULSD in the case of low load condition. Also, the fuel consumption of BD20 was more higher than that of ULSD. Fuel consumption by applied pilot injection strategy were generally decreased compared with that of single injection. In the case of pilot injection, the exhaust emissions such as CO and HC emissions were decreased compared to the single injection.

A Study on the Characteristics of Spray and Engine Combustion of Diesel-DME Blended Fuel (Diesel-DME 혼합연료의 분무 및 엔진 연소특성에 관한 연구)

  • Yang, Ji Woong;Jung, Jae Hoon;Lim, Ock Taeck
    • Journal of ILASS-Korea
    • /
    • v.18 no.2
    • /
    • pp.73-80
    • /
    • 2013
  • The purpose of this study was compared the spray, combustion and emissions (NOx, CO, HC, smoke) characteristics of a typical fuel (100% Diesel, DME) and Diesel-DME blended fuel in a Constant Volume Chamber (CVC) and a single-cylinder DI diesel engine. Spray characteristics were investigated under various ambient and fuel injection pressures when the Diesel-DME blended ratio is varied. The parameters of spray sturdy were spray shape, penetration length, and spray angle. Common types of injectors having seven holes and made by Bosch were used. As of use, the typical fuel (100% Diesel, DME) and the blended fuel by mixture ratio 95:5, 90:10 (Diesel:DME) were used. The Injection pressure was fixed by 70.1MPa, when the ambient Pressure was varied 0.1, 2.6 and 5.1 MPa. The combustion experiments was conducted with single cylinder engine equipped with common rail injection system. injection pressure is 70 MPa. The amount of injected fuels is adjusted to obtain the fixed input calorie value as 972.2 J/cycle in order to compare with the fuel conditions.

Case Study of Intermittent Poor Acceleration Fault Diagnosis by Brake Switch Fault (브레이크 스위치 결함에 의한 간헐적인 가속불량 현상의 고장진단 사례연구)

  • Kim, Sung Mo;Jo, Haeng Deug
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.24 no.2
    • /
    • pp.203-210
    • /
    • 2015
  • This paper investigates the failure of a car with a 2.5-liter CRDi engine of the Hyundai Company. The failure is caused by intermittent poor acceleration while driving. To analyze the cause, we investigated the air intake volume, the fuel injection, and the air-fuel ratio, which were determined to be normal. The brake switch signal error was discovered while analyzing the function that limits the output of the engine. While investigating the cause, we discovered the corrosion of the pins on the connector of the brake switch. We determined that it was generated by soapy water flowing in the solar film. Therefore, the cause of the failure was the brake switch signal errors. Additionally, we determined that ECM was the normal fail-safe mode that implemented the override device for safety during normal acceleration. Based on these results, further solar film experiments must be conducted to fully elucidate the causes.

Comparison on Spray Characteristics of Diesel HEV Injectors for 3-different Driving Type (SI, PI, DPI) (3개 구동방식(SI, PI, DPI)별 디젤HEV용 인젝터의 분무 특성 비교)

  • Chung, M.C.;Sung, G.S.;Kim, S.M.;Lee, J.W.
    • Journal of ILASS-Korea
    • /
    • v.19 no.1
    • /
    • pp.9-14
    • /
    • 2014
  • Performance of DI diesel engine with high-pressure fuel injection equipment is directly related to its emission characteristics and fuel consumption. So, the electro-hydraulic injector for the common-rail injection system should be designed to meet the precise high fuel delivery control capability. Currently, most high pressure injector in use has a needle driven by the solenoid coil energy or the piezo actuator controlled by charge-discharge of output pulse current. In this study, macroscopic spray approaching method was applied under constant volume chamber to research the performance of three different injectors : solenoid, indirect-acting piezo and direct-acting piezo type for CR direct-injection. LED back illumination for Mie scattering was applied on the liquid spray visible of direct-acting piezo injector, including hydraulic-servo type solenoid and piezo-driven injectors. As main results, we found that a direct-acting piezo injector had better a spray tip penetration than hydraulic-servo injectors in spray visualization.