• 제목/요약/키워드: Rail pressure

검색결과 344건 처리시간 0.026초

커먼레일 연료분사 시스템을 장착한 2.9 리터급 경량 DME 트럭의 연구 및 개발 (Research and Development of a 2.9 Liter Light-duty DME Truck Using Common Rail Fuel Injection Systems)

  • 정수진;박정권;오세두;이기수;임옥택;표영덕
    • 한국자동차공학회논문집
    • /
    • 제20권6호
    • /
    • pp.107-116
    • /
    • 2012
  • In this study, the trucks(2.9-liter) have been developed to use DME as fuel, and performance test of the vehicle's DME engine, power, emissions, fuel economy and vehicle aspects was conducted. For experiments, the fuel system(common-rail injectors and high-pressure pump included) and the engine control logic was developed, and ECU mapping was performed. As a result, the rail pressure from 40MPa to approximately 65% increase compared to the base injector has been confirmed that. Also, the pump discharge flow is 15.5 kg/h when the fuel rail pressure is 400rpm(40MPa), and the pump discharge flow is 92.1 kg/h when the fuel rail pressure is 2,000rpm(40MPa). The maximum value of full-load torque capability is 25.5 kgfm(based on 2,000 rpm), and more than 90% compared to the level of the diesel engine were obtained. The DME vehicle was developed in this study, 120 km/h can drive to the stable, and calculated in accordance with the carbon-balance method of fuel consumptions is 5.7 km/L.

커먼레일 연료분사 시스템을 장착한 경량 DME 트럭의 연구 및 개발 (Research and Development of a Light-Duty DME Truck Using Common Rail Fuel Injection Systems)

  • 정수진;전문수;박정권
    • 융복합기술연구소 논문집
    • /
    • 제2권1호
    • /
    • pp.24-30
    • /
    • 2012
  • In this study, the trucks(2.9-liter) have been developed to use DME as fuel, and performance test of the vehicle's DME engine, power, emissions, fuel economy and vehicle aspects was conducted. For experiments, the fuel system(common-rail injectors and high-pressure pump included) and the engine control logic was developed, and ECU mapping was performed. As a result, the rail pressure from 40MPa to approximately 65% increase compared to the base injector has been confirmed that. Also, the pump discharge flow is 15.5 kg/h when the fuel rail pressure is 400rpm(40 MPa), and the pump discharge flow is 92.1 kg/h when the fuel rail pressure is 2,000rpm(40MPa). The maximum value of full-load torque capability is 25.5kgfm(based on 2,000rpm), and more than 90% compared to the level of the diesel engine were obtained. The DME vehicle was developed in this study, 120 km/h can drive to the stable, and calculated in accordance with the carbon-balance method of fuel consumptions is 5.7 km/L.

  • PDF

인젝터 구동 전류 패턴 변화가 솔레노이드 타입 커먼레일 인젝터 분사율 특성에 미치는 영향에 대한 컴퓨터시뮬레이션 (A Computer Simulation of Injection Rate Characteristics of Solenoid Type Common Rail Injector According to Injector Driving Current Patterns)

  • 이충훈
    • 한국분무공학회지
    • /
    • 제24권3호
    • /
    • pp.114-121
    • /
    • 2019
  • The effect of injector driving current pattern on fuel injection rate of solenoid diesel common rail injector was studied by computer simulation. The time resolved fuel injection rate and injected quantity per stroke of a common rail injector driven with the five current patterns were computer simulated. The fuel injection rate and injected quantity per stroke according to the rail pressure and fuel injection period were also computer simulated. When the common rail injector was driven with the five driving current patterns of peak & hold, there was no difference in the fuel injection rate in the peak section regardless of all the current patterns of the five cases. On the other hand, the magnitude of the hold current value influenced the injection rate and injected quantity per stroke. That is, in the current pattern of three cases where the hold current value is equal to or more than a constant value of the peak current value, the fuel injection rates for the given common rail rail pressure and injection period are same one another. On the other hand, the current pattern of the two cases, in which the hold current value is smaller than a certain value, there is a large fluctuation in the fuel injection rate.

데이터 분석 기반 유화연료 조건과 디젤엔진 분사시스템 거동에 관한 연구 (A Study on Emulsified Fuel Conditions and the Behavior of Diesel Engine Injection System based on Data Analysis)

  • 김민섭;;허장욱
    • 한국기계가공학회지
    • /
    • 제20권7호
    • /
    • pp.80-88
    • /
    • 2021
  • The behavior of the injection system was determined through FFT and PSD analysis of the pressure data of the common rail, and when the diesel fuel is mixed with water, the pressure data of the common rail, depending on the water content and engine rotation speed, represent a different frequency component distribution. Recently, a theory has been suggested that mixing diesel fuel with water controls engine overheating, fuel efficiency, NOx, CO, etc., but if water content exceeds 10%, it can have a fatal adverse effect on the engine's injection system. In the future, it is necessary to promote fault diagnosis and prediction studies of diesel engines using FFT and PSD results from common rail pressure data.

HILS기반 상용차 디젤엔진용 연료펌프의 전기구동 시스템 적용에 관한 연구 (Study on the Application of the Electric Drive System of Fuel Pump for Diesel Engine of Commercial Vehicle using HILS)

  • 고영진
    • 한국자동차공학회논문집
    • /
    • 제22권2호
    • /
    • pp.166-174
    • /
    • 2014
  • Fuel injection pressure has steadily increased in diesel engines for the purpose of improving fuel efficiency and cleaning exhaust gas, but it has now reached a point, where the cost for higher pressure does not warrant additional gains. Common rail systems on modern diesel engines have fuel pumps that are mechanically driven by crankshaft. The pumps actually house two pumping module inside: a low pressure pump component and a high pressure pump component. Part of the fuel compressed by the low pressure component returns to the tank in the process of maintaining the pressure in the common rail. Since the returning fuel represents pumping loss, fuel economy improves if the returned fuel can be eliminated by using a properly controled electrical fuel pump. As the first step in developing an electrical fuel pump the fuel supply system on a 6 liter diesel engine was modeled with AMESim to analyze the workload and the fuel feed rate of the injection pump, and the results served as basis for selecting a suitable servo motor and a reducer to drive the pump. A motor controller was built using a DSP and a program which controls the common rail pressure using a proportional control method based on the target fuel pressure information from the engine ECU. A test rig to evaluate performance of the fuel pump is implemented and used to show that the newly developed electrically driven fuel pump can satisfy the fuel flow demand of the engine under various operating conditions when the rotational speed of the pump is adequately controlled.

연료레일 압력과 엔진 속도가 가스연료 시스템에 미치는 영향에 관한 연구 (A Study on the Effects of Fuel Rail Pressure and Engine Speed on Gas Fuel System)

  • 곽윤기
    • 한국정보전자통신기술학회논문지
    • /
    • 제11권5호
    • /
    • pp.579-585
    • /
    • 2018
  • 이번 연구는 가스 연료의 연료 공급 시스템에서 분사 압력과 엔진 속도에 따른 연료 분사 특성을 확인하였다. 이번 실험에서 연료 레일 압력은 1.5에서 6.0 bar까지 1.5 bar 단위로 증가시키고, 엔진 속도는 1,000 에서 6,000 RPM으로 1000 RPM 간격으로 설정하였다. 실제 엔진 작동을 고려하여 분사 펄스폭은 각각 2.5 ms, 5.0 ms 및 13.0 ms로 설정하였으며, 이는 각각 엔진 주행상태에서 저, 중 및 고 부하 운전조건에 해당한다. 결론적으로 100cc 연료레일의 경우, 분사 압력 4.5bar에서 가장 우수한 성능을 보였고, 1000 ~ 6000RPM의 엔진 속도에서 엔진 출력을 보장하는 최소 요구 분사량 53 cc을 얻을 수 있다.

구름접촉피로시험을 통한 고속철도 레일연마량 분석 (Analysis for Optimal Rail Grinding Amount by Rolling Contact Fatigue Test in High Speed Railway)

  • 장기성;성덕룡;박용걸;최진유;이동형
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2011년도 정기총회 및 추계학술대회 논문집
    • /
    • pp.2115-2124
    • /
    • 2011
  • The rail surface defects which are generated on repeated rolling contact fatigue are getting increased according to high speed, high density, and minimum weight. In addition, Increasing noise and vibration are affected by these also impact load generated as well. Because of this phenomenon, more serious and critical damages were occurred. In fact, in order to control them, the rail grinding were conducted. However, there are not enough researches to make an criteria of generating optimal rail grinding amount in Korea. This study evaluated how depth of hardening on rail surface is formed and suggested optimal rail grinding amount by RCF(rolling contact fatigue) test with generated contact pressure between KTX wheel and UIC60 rail by applying FEM analysis. Therefore, the amount was generated approximately 0.2mm/20MGT to maintain integrity of rail surface by getting rid of depth of hardening on rail according to rail accumulated passing tonnage.

  • PDF

천연가스 개조 승용차에 대한 실험적 연구(2) - 분사 시스템 평가 (Experimental Study on Natural Gas Conversion Vehicle(2) - Evaluation of Injection System)

  • 김형구;권순태;엄인용
    • 한국자동차공학회논문집
    • /
    • 제23권4호
    • /
    • pp.444-453
    • /
    • 2015
  • In the previous study, several problems were observed in a NG conversion vehicle, which were fail of air-fuel ratio closed loop control, aggravated fuel economy, increased harmful emission and declined roadability. It was provisionally supposed that the mismatch of injection system with the engine caused these performance deterioration. In this context, the characteristics of fuel injection system of commercial conversion kit for NG were investigated experimentally varying the engine speed, fuel rail pressure and volume. The results are as follows; The injection quantity decreases as the engine speed increases due to the extremely small rail volume of the presenting system and flow rate of No. 2 injector are always lower than that of the other ones regardless of the speed under the dynamic operation condition. Furthermore the existing system does not meet the required fuel quantity for the normal engine operation over 3000 RPM. On the other hands, the large rail volume systems ease and/or eliminate the difference of injection quantity between the injectors according to the speed variation, however, these systems decrease injection flow rate and still cannot supply sufficient fuel. Finally, suitable combination of the higher rail pressure and the larger rail volume might be a solution about these problems.

A Study on Fluctuating Pressure Load on High Speed Train Passing through Tunnels

  • Seo Sung-Il;Park Choon-Soo;Min Oak-Key
    • Journal of Mechanical Science and Technology
    • /
    • 제20권4호
    • /
    • pp.482-493
    • /
    • 2006
  • The carbody structure of a high speed train passing through a tunnel is subjected to pressure fluctuation. Fatigue strength of the carbody structure against the fluctuating pressure loading should be proved in the design stage for safety. In this study, to get the useful information on the pressure fluctuation in the tunnel, measurement has been conducted during test running of KHST on the high speed line for two years. The measured results were analyzed and arranged to be used for carbody design. A prediction method for the magnitude and frequency of pressure change was proposed and the propagating characteristics of pressure wave was investigated. By statistical analysis for the measured results, a pressure loading spectrum for the high speed train was given. The proposed method can also be used to estimate the pressure loading spectrum for new high speed line at design stage combined with the results of train performance simulation.

전자제어 커먼레일 압축착화엔진용 고압연료펌프의 DME 적용 성능에 관한 연구 (A Study on the DME Application Performance of a High Pressure Fuel Pump for an Electric Controlled Common-rail Compression Ignition Engine)

  • 정재우;김남호;강정호;박상욱;이호길;최승규
    • 한국자동차공학회논문집
    • /
    • 제17권2호
    • /
    • pp.132-140
    • /
    • 2009
  • Recently, the interest in the development of high efficiency Diesel engine technology using alternative fuel has been on the rise and related studies are being performed. Therefore, the DME(Dimethyl Ether), an oxygen containing fuel as an alternative fuel for light oil that can be used for diesel engines since it generates very little smoke. But it is unavoidable that the modification of a fuel supply system in an engine to application of the DME fuel because of DME fuel properties. So, in this study, a DME high pressure pump for a common-rail fuel supply system has been composed and the test results of the pump have been presented. As the results of the tests, it is confirmed that DME pump inlet pressure, pump speed and common-rail pressure effects on the volumetric efficiencies of the pump. Finally, it is defined that the optimum plunger volume of a DME pump has to be extended to the minimum 150% compared to a Diesel pump plunger volume considering DME fuel properties and volumetric efficiencies characteristics at same specifications of the high pressure pump.