• 제목/요약/키워드: Rail pressure

검색결과 344건 처리시간 0.032초

커먼레일 시스템용 고압펌프의 성능 특성에 관한 연구 (A Study on the Performance Characteristic of Common Rail High Pressure Pump)

  • 이춘태
    • 동력기계공학회지
    • /
    • 제17권6호
    • /
    • pp.5-10
    • /
    • 2013
  • Diesel engines have the advantages of good fuel efficiency and low emissions. Therefore, car makers have been developed various kinds of diesel engine management system to clean up emissions while improving fuel efficiency. One of them is the common rail system. In the common rail system, diesel fuel is injected into the combustion chamber at ultra high pressures up to 1,800 bar to ensure more complete combustion for cleaner exhaust gas, and highly precise multiple injection reduces NOx emission, combustion noise and vibration. Generally speaking, common rail system consists of booster pump, high pressure pump, common rail, injectors, control valves, and sensors. The high pressure pump receives low pressure fuel from the booster pump and supply high pressure fuel to injectors through the high pressure common injection rail. Therefore, high pressure pump has an important role in common rail system. In this paper, we have investigated the performance of high pressure pump of common rail system.

커먼레일 고압분사 시스템 수치 시뮬레이션 (Simulation of High Pressure Common-rail Fuel Injection System)

  • 김홍열;구자예;나형규;김창수
    • 한국자동차공학회논문집
    • /
    • 제6권5호
    • /
    • pp.162-173
    • /
    • 1998
  • The high pressure common rail injection system offers a high potential for improving emmisions and performance characteristics in large direct diesel engines. High pressures in the common rail with electronic control allows the fuel quantity and injection timing to be optimized and controlled throughout a wide range of engine rpm and load conditions. In this study, high pressure supply pump, common rail, pipes, solenoid and control chamber, and nozzle were modeled in order to predict needle lift, rate of injection, and total injected fuel quantity. When the common rail pressure is raised up to 13.0 ㎫ and the targer injection duration is 1.0ms, the pressure drop in common rail is about 5.0㎫. The angle of effective pressurization is necessary to be optimized for the minimum pump drive torque and high pressure in common rail depending on the operating conditions. The characteristics of injection were also greatly influenced by the pressures in common rail, the areas of the inlet and exit orifice of the control chamber.

  • PDF

커먼레일 시스템용 저압 유압회로의 성능특성에 관한 연구 (A Study on the Performance Characteristics of Low Pressure Hydraulic Circuit of Common Rail System)

  • 이춘태
    • 동력기계공학회지
    • /
    • 제18권6호
    • /
    • pp.51-57
    • /
    • 2014
  • High pressure common rail injection technology has revolutionized the diesel industry. Over the last decade it has allowed engine builders to run higher injection pressures as much as above 1,300bar in order to increase engine efficiency, while reducing emissions. This common rail system has low pressure circuit which is consist of low pressure pump, cascade overflow valve and flow metering unit. The low pressure pump's purpose is to feed fuel oil to the high pressure pump. The cascade overflow valve keeps pressure in front of the metering unit constant and provides lubrication for the high pressure pump. The metering unit, known as the MPROP or fuel pressure regulator, regulates the maximum flow rate delivers to the rail. In this paper, we have investigated the performance characteristics of each components and total low pressure circuit of common rail system.

QFT를 이용한 디젤엔진의 커먼레일 압력 제어알고리즘 설계 연구 (Common Rail Pressure Control Algorithm for Passenger Car Diesel Engines Using Quantitative Feedback Theory)

  • 신재욱;홍승우;박인석;선우명호
    • 대한기계학회논문집B
    • /
    • 제38권2호
    • /
    • pp.107-114
    • /
    • 2014
  • 이 연구에서는 Quantitative Feedback Theory(QFT) 기법을 이용한 승용디젤엔진의 커먼레일 압력제어 알고리즘을 제안하였다. 커먼레일 압력모델의 입력과 출력은 각각 Pressure Control Valve(PCV) 구동전류와 커먼레일 압력으로 정의하였고, Metering Unit(MeUn)이 커먼레일 압력에 미치는 영향은 모델 파라미터 불확실성으로 정의하였다. QFT 기법은 이러한 모델의 불확실성에 대하여 강건하면서도 정량적 요구사항을 만족할 수 있는 제어알고리즘 설계방법을 제시한다. 제안된 커먼레일 압력제어기는 목표 레일압력 추종성능과 안정성능이 확보되었으며, 인젝터에 의한 연료분사가 커먼레일 압력에 미치는 영향을 줄이기 위하여 외란제거성능(Disturbance Rejection)이 고려되었다. 설계된 제어 알고리즘은 엔진 동력계 실험을 통하여 검증하였으며, MeUn 구동전류와 연료분사량의 급격한 변화에 따른 제어알고리즘의 강건성과 외란제거성능을 검증하였다.

자체 맥동 감쇠 효과를 갖는 연료레일의 설계 변수별 압력맥동 특성에 관한 수치적 연구 (Numerical Study on the Characteristics of Pressure Pulsations according to Design Factors of Fuel Rail with Self Damping Effect)

  • 허형석;배석정;송경석;김보겸
    • 한국자동차공학회논문집
    • /
    • 제15권1호
    • /
    • pp.186-192
    • /
    • 2007
  • In general, pulsation damper is installed in fuel rail for conventional MPI engine to decrease undesirable noise in vehicle cabin room. However, pulsation damper is so expensive that there are prevailing studies to reduce fuel pressure pulsations with integrated damping effect. This paper is one of basic studies for development of fuel rail to abate pulsations with self-damping effect. Primarily, the pressure pulsation characteristics was investigated with aspect ratio of cross section, wall thickness, and materials of fuel rail. A high aspect ratio or thin wall was found to absorb the pressure pulsations effectively. But volume effects on the fuel pressure pulsation reductions were not especially significant than cross section effects because volume increment rate is larger than pressure pulsation reduction rate. The fuel rail made of aluminum is effective for reduction of pressure pulsation than that of low-carbon steel. Pressure change period increases on the basis of same lengths of supply line and fuel rail as the volume is enlarged and/or the thickness of wall is thinned.

자체 맥동 감쇠 효과를 갖는 연료레일의 오일 해머 및 분사 특성에 따른 압력맥동 시뮬레이션 (Numerical Study on the Characteristics of Pressure Pulsations according to Design Factors of Fuel Rail with Self Damping Effect)

  • 허형석;배석정;이헌균;이기수;황재순;이동은;김현철
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2008년도 춘계학술대회논문집
    • /
    • pp.332-336
    • /
    • 2008
  • A pulsation damper is usually mounted on the fuel rail to diminish undesirable noise in the vehicle cabin room. However, pulsation dampers are quite expensive. Therefore, several studies have focused on reducing fuel pressure pulsations by increasing the self-damping characteristics of the fuel rail. This paper is a basic study in the development of a fuel rail that can reduce pulsations via a self-damping effect. In this study, the pressure pulsation characteristics were of investigated with respect to the aspect ratio of the cross section, wall thickness, and fuel rail material through oil hammer simulations. An oil hammer simulation was performed in advance to simulate the pressure pulsations at the resonant speed, which is a time-saving way. The pressure pulsation peak of fuel rail was observed to rise as the injection period increases. Increase of the aspect ratio and decrease of the wall thickness can reduce the pressure pulsation efficiently.

  • PDF

궤도강성변화구간의 레일압력 분포에 관한 연구 (Rail Pressure on the Changing Point of Track Modulus)

  • 이기승;천진녕;김성칠;권순섭
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2002년도 춘계학술대회 논문집
    • /
    • pp.228-233
    • /
    • 2002
  • The transition between bridge or tunnel and plain track has different rail pressure and distributed stress on formation. This paper shows distribution of rail pressure on transition at which spring stiffness are changed. By this study, it is revealed that the changing into relatively high stiffness causes increased rail pressure visibly and draw up dynamic track force. A medium stiffness structure and reinforced rail could be effective for reducing track force on the transition.

  • PDF

초고압 커먼레일 연료분사튜브 원재료 강성 최적화를 위한 인발 공정에서의 Die와 Plug 각도 변경에 따른 해석적 연구 (An Analytical Study by Variation of Die and Plug Angle in Drawing Process for the Strength Optimization of Ultra High Pressure Common Rail Fuel Injection Tube Raw Material)

  • 안서연;박정권;김용겸;원종필;김현수;강인산
    • 한국자동차공학회논문집
    • /
    • 제24권3호
    • /
    • pp.338-344
    • /
    • 2016
  • The study is actively being performed to increase fuel injection pressure of common rail system among countermeasures to meet the emission regulation strengthen of the Diesel engine. The common rail fuel injection tube in such ultra high pressure common rail system has the weakest structural characteristics against vibration that is generated by fuel injection pressure and pulsation during engine operation and driving. Thus the extreme durability is required for common rail fuel injection tube, and the drawing process is being magnified as the most important technical fact for strength of seamless pipe that is the raw material of common rail tube. In this respect, we analyzed the characteristic of dimension and stress variation of the ultra high pressure common rail fuel injection tube by variation of Die and Plug angle in drawing process. Based on the analysis, we tried to obtain the raw material strength of common rail fuel injection tube for applying to the ultra high pressure common rail system. As a result, Plug angle is more important than entry angle of Die and we could obtain the target dimension and strength of the ultra high pressure common rail fuel injection tube through optimization of Plug angle.

곡선부 차륜/레일 접촉압력에 따른 레일마모진전 경향 분석 (Analysis of Rail Wear Rate according to Wheel/Rail Contact Pressure on Curved Track)

  • 성덕룡
    • 한국철도학회논문집
    • /
    • 제20권4호
    • /
    • pp.512-520
    • /
    • 2017
  • 일반적인 철도에서는 차륜과 레일의 마찰력을 이용하여 열차가 주행하게 된다. 차륜과 레일 사이에는 접촉압력이 발생하게 되고, 차량의 중량, 속도, 사행동, 접촉점 등에 따라 접촉압력의 크기가 변화하게 된다. 본 연구에서는 곡선부 차륜/레일에 대한 유한요소해석을 통해 접촉특성을 분석하였으며, 구름접촉피로시험을 통해 접촉압력에 따른 차륜/레일의 피로손상 및 마모율을 분석하였다. 구름접촉피로시험결과, 일반 및 열처리레일은 차륜에 비해 마모율이 높았으며, 일반 및 열처리레일마모율은 일정한 반복횟수 이상에서 급격히 증가하는 것으로 분석되었다. 또한, 일반레일이 열처리레일 보다 약 7~15% 마모율이 높았으며, 접촉압력 900~1,500MPa 범위에서 접촉압력에 따른 레일마모율에 대한 회귀분석식을 제시하였다.

승용디젤엔진의 과도구간 입자상물질 저감 및 운전성능 향상을 위한 연료분사량 및 커먼레일압력 제어전략 (A Control Strategy of Fuel Injection Quantity and Common-rail Pressure to Reduce Particulate Matter Emissions in a Transient State of Diesel Engines)

  • 홍승우;정동혁;선우명호
    • 한국자동차공학회논문집
    • /
    • 제23권6호
    • /
    • pp.623-632
    • /
    • 2015
  • This study proposes a control strategy of the common rail pressure with a fuel injection limitation algorithm to reduce particulate matter (PM) emissions under transient states. The proposed control strategy consists of two parts: injection quantity limitation and rail pressure adaptation. The injection limitation algorithm determines the maximum allowable fuel injection quantity to avoid rich combustion under transient states. The fuel injection quantity is limited by predicting the burned gas rate after combustion; however, the reduced injection quantity leads to deterioration of engine torque. The common rail pressure adaptation strategy is designed to compensate for the reduced engine torque. An increase of the rail pressure under transient states contributes to enhancement of the engine torque as well as reduction of PM emissions by promoting atomization of the injected fuel. The proposed control strategy is validated through engine experiments. The rail pressure adaptation reduced the PM emission by 5-10% and enhanced the engine torque up to 2.5%.