• Title/Summary/Keyword: Rail irregularities.

Search Result 53, Processing Time 0.031 seconds

Prediction of bending fatigue lifes of rail welded parts (레일용접부 피로수명 예측)

  • 양신추;이진욱;나성훈
    • Proceedings of the KSR Conference
    • /
    • 1999.05a
    • /
    • pp.390-397
    • /
    • 1999
  • This paper investigates about the prediction of rail bending fatigue lifes for the purpose of the effective maintenance of surface irregularities of rail welded parts. The rail bending stresses are calculated using a track dynamic analysis program. The rail surface irregularities measured in situ are given as inputs in the analyses. On the other hand, the S-N curves are derived based on the results of bending fatigue tests. Using data found so far, rail fatigue lifes are estimated adopting a modified Miner's rule. The useful guides for maintenance of rail welded part are proposed in terms of grinding period and grinding depth of rail surface irregularities.

  • PDF

Application of Recursive Least Squares Method to Estimate Rail Irregularities from an Inertial Measurement Unit on a Bogie (대차 관성측정 장치에서 궤도틀림 추정을 위한 반복 최소자승법의 적용)

  • Lee, Jun-Seok;Choi, Sung-Hoon;Kim, Sang-Soo;Park, Choon-Soo
    • Proceedings of the KSR Conference
    • /
    • 2011.05a
    • /
    • pp.427-434
    • /
    • 2011
  • This paper is focused on application of recursive least squares method to estimate rail irregularities from the acceleration measurement on an axle-box or a bogie for the rail condition monitoring with in-service high-speed trains. Generally, the rail condition was monitored by a special railway inspection vehicle but the monitoring method needs an expensive measurement system. A monitoring method using accelerometers on an axle-box or a bogie was already proposed in the previous study, and the displacement was successfully estimated from the acceleration data by using Kalman and frequency selective band-pass filters. However, it was found that the displacement included not only the rail irregularities but also phase delay of the applied filters, and effect of suspension of the bogie and conicity of the wheel. To identify the rail irregularities from the estimated displacement, a compensation filter method is proposed. The compensation filters are derived by using recursive least squares method with the estimated displacement as input and the measured rail irregularity as output. The estimated rail irregularities are compared with the true rail irregularity data from the rail inspection system. From the comparison, the proposed method is a useful tool for the measurement of lateral and vertical rail irregularity.

  • PDF

On effects of rail fastener failure on vehicle/track interactions

  • Xu, Lei;Gao, Jianmin;Zhai, Wanming
    • Structural Engineering and Mechanics
    • /
    • v.63 no.5
    • /
    • pp.659-667
    • /
    • 2017
  • Rail support failure is inevitably subjected to track geometric deformations. Due to the randomness and evolvements of track irregularities, it is naturally a hard work to grasp the trajectories of dynamic responses of railway systems. This work studies the influence of rail fastener failure on dynamic behaviours of wheel/rail interactions and the railway tracks by jointly considering the effects of track random irregularities. The failure of rail fastener is simulated by setting the stiffness and damping of rail fasteners to be zeroes in the compiled vehicle-track coupled model. While track random irregularities will be transformed from the PSD functions using a developed probabilistic method. The novelty of this work lays on providing a method to completely reveal the possible responses of railway systems under jointly excitation of track random irregularities and rail support failure. The numerical results show that rail fastener failure has a great influence on both the wheel/rail interactions and the track vibrations if the number of rail fastener failure is over three. Besides, the full views of time-dependent amplitudes and probabilities of dynamic indices can be clearly presented against different failing status.

Measurement of Track geometry with HSR350X (한국형고속열차를 이용한 궤도 틀림 측정결과 비교분석)

  • Im, Yong-Chan;Kim, Sang-Soo;Park, Choon-Soo;Kim, Ki-Hwan
    • Proceedings of the KSR Conference
    • /
    • 2007.11a
    • /
    • pp.278-282
    • /
    • 2007
  • The riding comfort and the durability of train are effected by the rail irregularities such as track gauge, superelevation, alignment, longitudinal level, twist, cant and cross level. Inspection and estimation of irregularities are very important to maintain the rail condition. Generally, the EM120 has been utilized to measure the rail irregularities once a month in Korea. However, the EM120 can be operated at night time only, because the inspection speed of EM120 is much slower than the speed of high-speed trains. Also, the EM120 is too slow to inspect effectively for the whole commercial line. Therefore, we have mounted the track inspection system on the High-Speed Rolling Stock 350 eXperimental (HSR350X) and measured the rail irregularities to confirm the condition of a rail while running 300km/h. In this paper, the track inspection system mounted on HSR350X is mainly considered, and the measured results through test run are introduced.

  • PDF

Estimation of Rail Irregularities by using Acceleration values (가속도 값을 이용한 궤도 불규칙도 검측)

  • Kim, Young-Mo;Park, Chan-Kyoung;Choi, Sung-Hoon;Kim, Sang-Soo;Park, Choon-Soo
    • Proceedings of the KSR Conference
    • /
    • 2008.06a
    • /
    • pp.2173-2178
    • /
    • 2008
  • Railroad is the major factor of vibration source in railway vehicles, and it must carefully maintained the original condition to secure the safety and good ride comfort of passenger. Measuring the condition of rail irregularities such as surface, alignment, gauge, twist and cant etc is required to maintain the good performance of railroad. Currently, the various rail irregularity measurement systems(EM120, ROGER1000K and the Total Rail Irregularity Measurement system of Korea High Speed Train) are operated in Korea to estimate the rail irregularity. It is hard to verify the correlation of one rail irregularity data of a measurement system with the other, because they have been adopted different rail irregularity estimation methods. The best method securing the reliability of the irregularity data is the direct confirmation on the ground where the measurement system had detected as a fault section, but it is impossible to apply all sections simultaneously due to limitation of time, labor, cost and equipments. There is a method to secure the reliability of the data by using acceleration values. Rail irregularities, the major factor of vibration in railway vehicle, are transmitted to the vehicle acceleration through masses, springs, dampers and joints as the system dynamic formation. In this study, Transition Function has been adopted by using the rail irregularity and the acceleration value regarding as input & output parameters respectively. It has been verified by comparing the analyzed results with real measured irregularity data from the Total Rail Irregularity Measurement system of Korea High Speed Train. Also various methods has been accomplished to verify the correlation between rail irregularities and acceleration values.

  • PDF

Prediction of Bending Fatigue Life to Welding Parts of Rail on Slab Track (슬래브궤도상의 레일 용접부 피로수명 예측)

  • 김만철;김진성;한상철
    • Journal of the Korean Society for Railway
    • /
    • v.4 no.4
    • /
    • pp.138-146
    • /
    • 2001
  • For the purpose of the effective maintenance of surface irregularities of rail, this paper investigates the rail service life to a bending fatigue failure of welding parts of rail on the slab track by the structures laboratory testing to derive S-N curves, a GTDAP(General Track Dynamic Analysis Program) to calculate the stresses and a modified Miner's rule to predict a fatigue life. The useful guides for maintenance of rail welded parts on the slab track are proposed in terms of a grinding period and the depth of rail surface irregularities. This study also proposed the guides for maintenance of rail welded part on the ballast track. The effects of fatigue service lives are compared one another.

  • PDF

Dynamic Wheel/Rail Contact Force due to Rail Irregularities (레일의 상하방향 불규칙성에 의한 차륜과 레일의 동 접촉력)

  • 이현엽
    • Journal of KSNVE
    • /
    • v.8 no.4
    • /
    • pp.616-622
    • /
    • 1998
  • An analytical method has been developed to estimate the dynamic contact force between wheel and rail when trains are running on rail with vertical irregularities. In this method, the effect of Hertzian deformation at the contact point is considered as a linearized spring and the wheel is considered as an sprung mass. The rail is modelled as a discretely-supported Timoshenko beam, and the periodic structure theory was adopted to obtain the driving-point receptance. As an example, the dynamic contact force for a typical wheel/rail system was analysed by the method developed in this research and the dynamic characteristics of the system was also discussed. It is revealed that discretely-supported Timoshenko beam model should be used instead of the previously used continuously-supported model or discretelysupported Euler beam model, for the frequency range above several hundred hertz.

  • PDF

A study on the characteristics of train and track behaviors due to irregularities at rail welding part (레일용접부의 요철에 따른 차량 및 궤도 거동특성에 대한 연구)

  • 이진욱;양신추;이안호
    • Proceedings of the KSR Conference
    • /
    • 1999.05a
    • /
    • pp.398-405
    • /
    • 1999
  • Large dynamic forces are generated between wheel and rail due to rail surface irregularities at rail welded part. The effects become more and more significant in the view of the present tendency to train speed increasing. Therefore, the purpose of this paper is to derive useful guides for the effective and economical maintenance of rail welded parts through the wheel and rail interaction analyses. A typical shape for the irregularity of rail welded part is assumed to make the analysis quantitative. The effects of the irregularity depth and train speed on the train and track behaviors are investigated.

  • PDF

Analysis of Relationship between the Irregularities of Rail Weld Surface and Track Irregularities (레일용접부 요철과 궤도틀림 상관관계 분석)

  • Woo, Byoung-Koo;Kim, Yong-Hyok;Yun, Un-San;Kim, Kwan-Hyung;Lee, Sung-Uk
    • Proceedings of the KSR Conference
    • /
    • 2009.05a
    • /
    • pp.539-545
    • /
    • 2009
  • KTX trains which began passenger service between Seoul and Busan in April 2004 have gained very high evaluation for their safe operation. Track is one of the most important means to keep KTX safety, it has not been a fail of safe structure. The track failure during operation may lead to a severe accident. So, it is to be verified the confidence of track maintenance management on the high speed line. This paper would like to find a track deformation trend through a comparative analysis on actual measurement data at these times. It discusses the effect of cyclic dynamic load at welding part. KTX dynamic impact load was measured in accordance with a rail surface irregularity and analyzed some track irregularities according to the condition of rail profile at welding part in the Gyeongbu high speed line.

  • PDF

Experimental Study to analyze Effect of Rail Corrugation Reduction according to Rail Grinding (레일연마에 따른 레일 파상마모 저감 효과 분석을 위한 실험적 연구)

  • Choi, Jung-Youl;Jeong, Cheon-Man;Chung, Jee-Seung
    • The Journal of the Convergence on Culture Technology
    • /
    • v.7 no.4
    • /
    • pp.801-806
    • /
    • 2021
  • Rail corrugation is continuously increasing due to the lack of maintenance regulations for the amount of rail irregularities. Rail corrugation is causing various problems, such as a decrease in ride comfort and an increase in the amount of track maintenance. In this paper, the effect of rail corrugation on the track force was analyzed by measuring the rail irregularities before and after rail grinding and the track measurements (dynamic wheel load, displacement, and acceleration) for the section where the rail corrugation occurred. In addition, it was experimentally proven that the rail grinding performed to reduce the corrugation of the rail was very effective in reducing the additional forces on the track.