• Title/Summary/Keyword: Rail Curve

Search Result 131, Processing Time 0.038 seconds

Construction of Through Transmission Scanning System for Weld Defects Detection of Rail Weld Zone (레일용접부의 용접결함검출을 위한 투과주사시스템의 구축)

  • Yun, In-Sik
    • Journal of the Korean Society of Safety
    • /
    • v.20 no.1 s.69
    • /
    • pp.30-35
    • /
    • 2005
  • This study proposes construction of through transmission for weld defects detection of rail weld zone from ultrasonic signals. For these purposes, the ultrasonic signals for defects(porosity and crack) of weld zone in rails are acquired in the type of time series data and echo strength. 6 lines in the distance amplitude characteristics curve(DACC) indicated damage evaluation standard of weld zone in rails. The acquired ultrasonic signals agree flirty well with the mesured results of reference block and sensitivity block(defect location beam propagation distance, echo strength, etc). The proposed construction of through transmission in this study can be used for weld defects detection of rail weld zone.

The Curve Equation of a Flat Wiper Spring Rail Inducing Uniformly Distributed Loads (균일 분포하중을 주는 플렛와이퍼 스프링레일의 곡면형상식 유도)

  • Yoon, Young-Sam;Kim, Cheol
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.18 no.4
    • /
    • pp.79-83
    • /
    • 2010
  • Recently, the flat wiper which is one piece wiper and subjected to a pressing force at a single center point is gaining wide applications on automotive windshields. However, nonuniform reactive pressure distributions takes place, so that wiping is not completed at such locations. The wiping performance of the flat wiper is best when a wiper and a curved windshield have perfect contact without gaps under the specified pressing force of 13 ~ 15 gf/cm. Therefore, it is necessary that the realistic curvature equation of a wiper spring-rail should be obtained. Finite element analysis, CATIA script-macro function, and the least square method were utilized to find out the curvature of a spring-rail for a perfect contact with a windshield under a specified concentrated load. The curvature equation became the third order polynomial.

A study of CWR on railway viaduct with sharp curves (철도고가교 급곡선부 레일장대화 방안연구)

  • 이상진;김기훈;신순호;이주헌
    • Proceedings of the KSR Conference
    • /
    • 2000.05a
    • /
    • pp.415-422
    • /
    • 2000
  • The Seoul Subway Line 4 crossing downtown diagonally constructed in February 1980 and opened on October 11, 1983. The line 4 is thus able to link southern and northern parts of Seoul with the downtown as well as with the Seoul outskirts. More than 810,000 people use it everyday. Line 4 was constructed like Line 1,2,3 with ballast track system causing much maintenance cost gradually and espicially much public discontent due to wheel and rail contact noise by railway viaduct with sharp curves. CWR on railway viaduct with sharp curves, 180m$\leq$R$\leq$300m, hasn't been designed and constructed ever in domestic. Therefore in order to reduce noise and vibration caused by interaction between wheel and rail the possibility and the methods of CWR(Continuous Welded Rail) on railway viaduct with sharp curve less than R300 will lead it to the maintenance free system.

  • PDF

A study on urban transit vibration characteristics for curved concrete track (도시철도 곡선구간 콘크리트궤도 진동특성에 관한 연구)

  • Kim, Kyoung-Min;Kim, Jin-Ho;Lee, Kwang-Do
    • Proceedings of the KSR Conference
    • /
    • 2011.05a
    • /
    • pp.442-445
    • /
    • 2011
  • Concrete track on the new railway lines of the existing roads are built on high ground, or less than 400m radius of the sharp curve sectors will occur. sharp curve sectors the rail and wheel friction, stick-slip due to the band of 1,000Hz or squeal noise occurs from the increase in civil complaints about noise is a real situation. In this study, discussed in previous studies, noise measurements for each radius of concrete track and frequency analysis, followed by the radius of the curve in order to investigate vibration characteristics of urban railway sector sharp curve radius less than 400m and 400m ~ 1,000 m further to the point selected track components(rails, sleepers, ballast) according to the vibration measurements and analysis of the frequency characteristics and the results were derived.

  • PDF

An Analysis of the Rail Wear Measurements for the Prediction of Particulate Matter Emission in Urban Railway (도시철도 미세먼지 발생량 예측을 위한 레일 마모량 분석)

  • Yoon, Cheonjoo;Ko, Huigyu;Bang, Myeongseok;Kwon, Hyeokbin
    • Journal of The Korean Society For Urban Railway
    • /
    • v.6 no.4
    • /
    • pp.339-350
    • /
    • 2018
  • The rail wear measurements in urban underground railway have been analyzed to predict the particulate matter emission caused by rail wear which is one of the major sources of particulate matter emission for underground railway systems. From the rail profile variations measured in the interval of one and half year by dedicated rail wear measuring instrument over the commercial urban underground railway line, 'line-s' which is about 45km long, the characteristics as well as the amount of rail wear have been analyzed after dividing the whole line into about 170 section with radius of curve(R). It has been concluded that the vertical wear parameter V0 and corner wear parameter C0 have been selected to represent the wear amount of straight and curved rail respectively. The amount of rail wear as well as the particulate matter emission by rail wear over the whole line normalized by the rail length as well as the number of train has also been deduced from the relationship between the rail wear parameters and the amount of rail cross-section area.

Danger Estimation with HIC and Risk Curve in Passengers Falls from Running Rail Cars

  • Nakagawa, Toshiko
    • International Journal of Safety
    • /
    • v.10 no.2
    • /
    • pp.21-26
    • /
    • 2011
  • In 2001, an independent official board was constituted in Japan to investigate aircraft and railway accidents. In the past 10 years, many accidents and serious incidents have been investigated and these official reports were published by the board, on which the author had sat for 9 years as boarding member. In the interim, there were several train disasters which mocked our trust in railways and also many apparent trivial incidents. In recent years, serious incidents, which a door of running rail cars opens suddenly with some trouble, happen 2 or 3 times in a year. For the past 10 years, such incidents have happened 14 times and 13 cases of them were closed by the board mentioned above. In these 13 cases, no one fell off the rail car, so that the death toll was none luckily. In this paper, these 13 serious incidents are picked up among all the reports published by the board and outlined using some tables. Especially, fall accidents of passengers are discussed mainly from the view point of impact force and duration time. Then, the equation of HIC (Head Injury Criteria) and the risk curves in terms of the HIC are dealt with properly.

  • PDF

Fatigue Strength Evaluation of Carbody and Bogie Frame for the Light Rail Transit System (경량전철에 대한 차체 및 대차틀의 피로강도평가)

  • Lee, Eun-Chul;Lee, Joon-Seong;Choi, Yoon-Jong;Lee, Jung-Hwan;Suh, Myung-Won;Lee, Ho-Yong;Lee, Yang-Chang
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.25 no.10
    • /
    • pp.77-83
    • /
    • 2008
  • In terms of saving costs, energy and materials, the weight of cars has been gradually reduced by optimizing design of structure, which also gives us good performance. In compliance with this, it should satisfy the lifetime of cars for 25 years under the operation. The purpose of this study is to evaluate the strength of fatigue using date from strain gauges attached carbody and bogie frame. This dynamic stress can be evaluated using S-N curve based on stress amplitude. Modified S-N curve by CORTON-DOLAN is used for more conservative and substantial evaluation. In addition, !he loadings itself of carbody and bogie frame are considered by calculating the rate of the differences which are occurred between empty car and fuiiy occupied car with passengers. Rainflow cycle counting method is applied to arrange the stress data for the modified S-N curve to predict lifetime of the materials. Conclusively the cumulative damages are not only calculated by Miner's Rule, but the safety factors are also determined by Goodman diagram.

Bending Fatigue Life Assessment of Aged CWR using the Field Test (현장측정을 통한 노후레일의 휨 피로수명 평가)

  • Park, Yong-Gul;Sung, Deok-Yong;Park, Hong-Kee;Kong, Sun-Yong
    • Journal of the Korean Society for Railway
    • /
    • v.11 no.3
    • /
    • pp.317-325
    • /
    • 2008
  • As a result of recent research, it is reported that the periodic replacements criterion of rails is able to extend as grinding rail surface and using the continuous welded rail (CWR). This study evaluated correlation between conditions of track and load capacity of rail by analysing the dynamic response of track while the metro train is running. Also, it was converted the measured stress waveform into stress frequency histogram by the rain-flow counting methods, and then accumulated fatigue damage ratio and remaining service life of laid rail were calculated so as the apply the equivalence of stress to S-N curve of a new welded rail. Finally, this study suggests a revision of the periodic replacements criterion of CWR, which was based on accumulated passing tonnage, classified by the types and conditions of track system.

Target and Implementation of Aerodynamic Drag Reduction for High-speed Train to Reach Up to 500km/h Running Speed (주행속도 시속 500km 달성을 위한 고속철도 차량의 공기저항 저감 목표 및 달성 방안)

  • Kwon, Hyeok-Bin;Yun, Su-Hwan;Lee, Hyung-Woo
    • Proceedings of the KSR Conference
    • /
    • 2011.10a
    • /
    • pp.1320-1326
    • /
    • 2011
  • The maximum speed of high-speed rail is restricted to various factors such as track condition including slope and radius, tunnel and dynamic stability of vehicle. Among the various factors, traction effort and resistance to motion is principal and basic factor. In addition, at high speed over 300km/h, aerodynamic drag amounts up to 80% of resistance to motion, that it can be said that aerodynamic drag is the most important factor to decide the maximum speed of high-speed rail system. This paper deals with a measure to increase the maximum speed of high-speed train by reducing aerodynamic drag. The traction effort curve and resistance to motion curve of existing high-speed train under development has been employed to set up the target of aerodynamic drag reduction to reach up to 500km/h without modification traction system. In addition, the contribution of various sources of aerodynamic drag to total value has been analyzed and the strategy for implementation of aerodynamic drag reduction has been discussed based on the aerodynamic simulation results around the train using computational fluid dynamics.

  • PDF