• Title/Summary/Keyword: Rahmen Structural System

Search Result 16, Processing Time 0.021 seconds

A Study on Implications and Planning Directions for the Development of a Modular Airborne Infection Isolation Ward (모듈러 음압병동 개발을 위한 시사점 및 계획방향에 관한 연구)

  • Choi, Kwangseok;Yun, Hyungjin
    • Journal of The Korea Institute of Healthcare Architecture
    • /
    • v.28 no.3
    • /
    • pp.7-16
    • /
    • 2022
  • Purpose: This study aims to establish the basic directions of the modular airborne infection isolation(AII) ward. Considering a specific function and purposed use as a modular AII ward, it is a chance to derive an address of current modular technology by overview the limitation and improvement of the existing modular architecture. Methods: In addition to the literature analysis on the configuration system of mobile hospitals, research cases on the operational effectiveness of the domestic and foreign mobile construction systems are analyzed. Results: In order to meet the various and strict space guidelines of the AII ward and a chance to improve limitations of uniformed existing modulars, AII modular the negative pressurized care setting should be minimized a structural restriction for reflecting its system on a architectural plan. For this unique requirements, it could be possible to apply various space boxes called infill box which needs to secure a large-scale space. So, a rahmen structure system could be adaptable for this purpose. A dead space between beams of the rahmen structure is to be used for MEP installation. Partial separation, dismantling, and repair should be possible by separating the MEP and infill box from the structure. The infill box must keep 3.5m width under the current Road Traffic Act. Implications: It is necessary to utilize and develop an improved construction method that can reduce the problems of existing steel modular and PC modular.

Determination of the Effective Buckling Length of Rahmen (라멘구조물의 유효좌굴장 결정)

  • 경용수;진만식;김문영
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2004.04a
    • /
    • pp.185-192
    • /
    • 2004
  • The goal of this paper is to determine the accurate effective length factor(K factor) for buckling design of plane frames and to point out the practical limitations of the alignment chart which provides the approximate effective length factor. At present, the most general method to obtain K factors is to use the alignment chart which is given in the form of nomograph in LRFD-AISC specification commentaries. However it should be realized that various simplifications and assumptions were used in obtaining the alignment chart. Therefore, a simple but effective method to obtain accurate K-factors through the stability analysis of plane frames is developed in this study. To demonstrate the accuracy and effectiveness of the present scheme, K-factors by system buckling analysis of frames are calculated and compared with those calculated by the alignment chart.

  • PDF

Finite Element Analysis of the Reinforced Concrete Boundary-Beam-Wall System Subjected to Axial Load (축하중이 작용하는 RC 경계보-벽체 시스템의 해석적 평가)

  • Son, Hong-Jun;Kim, Seung-Il;Kim, Dae-Jin
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.34 no.2
    • /
    • pp.93-100
    • /
    • 2021
  • In Korea, one of the most used structural systems for residential apartment buildings is the combination of the reinforced concrete (RC) wall and rahmen structures in the upper and lower floors, respectively. To alleviate the significant difference between the stiffnesses of these two structural systems, large transfer girders are generally required in the transition zone of the structure, which then results in the use of large amounts of construction materials and low economic feasibility. This paper proposes a new RC boundary-beam-wall system that can minimize the disadvantages of the RC transfer girder system. The structural performance of the proposed system subjected to axial loading was evaluated via rigorous three-dimensional nonlinear finite element analysis. Four parameters, namely the ratio of lower wall to upper wall lengths, distance between stirrups, main bar slope ratio, and slab length, were considered in the finite element analysis, and their effects on the maximum axial load were analyzed and discussed.

A Research on the Classified Structural System in Long-Span Structures (대공간 구조형식 분류체계에 관한 연구)

  • Yang, Jae-Hyuk
    • Journal of Korean Association for Spatial Structures
    • /
    • v.2 no.3 s.5
    • /
    • pp.81-92
    • /
    • 2002
  • The objective of this paper is to help to make decision of the appropriate structural types in long span structured building due to range of span. For the intention, based on 7 forces of structural element, it is analized the relationships among 6 configurations of structural element(d/1), 25 structural types, 4 materials, and span-length known with 186 sample from 1850 to 1996. 1) bending forces: $club(1/100{\sim}1/10),\;plate(1/100{\sim}1/10),\;rahmen(steel,\;10{\sim}24m)\;simple\;beam(PC,\;10{\sim}35m)$ 2) shearing forces: $shell(1/100{\sim}1/1000)\;hyperbolic\;paraboloids(RC,25{\sim}97m)$ 3) shearing+bending forces: plate, folded $plate(RC21{\sim}59m)$ 4) compression axial forces: club, $arch(RC,\;32{\sim}65m)$ 5) compression+tension forces: shell, braced dome $shell(RC,\;40{\sim}201m),\;vault\;shell(RC,\;16{\sim}103m)$ 6) compression+tension axial forces: $rod(1/1000{\sim}1/100)$, cable(below 1/1000)+rod, coble+rod+membrane(below 1/1000), planar $truss(steel,\;31{\sim}134m),\;arch\;truss(31{\sim}135m),\;horizontal\;spaceframe(29{\sim}10\;8m),\;portal\;frame(39{\sim}55m),\;domical\;space\;truss(44{\sim}222m),\;framed\;\;membrane(45{\sim}110m),\;hybrid\;\;membrane\;(42{\sim}256m)$ 7) tension forces: cable, membrane, $suspension(60{\sim}150m),\;cable\;\;beam(40{\sim}130m),\;tensile\;membrane(42{\sim}136m),\;cable\;-slayed(25{\sim}90m),\;suspension\;membrane(24{\sim}97m),\;single\;layer\;pneumatic\;structure(45{\sim}231m),\;double\;layer\;pneumatic\;structures(30{\sim}44m)$

  • PDF

Interface Establishment between Reinforcement Learning Algorithm and External Analysis Program for AI-based Automation of Bridge Design Process (AI기반 교량설계 프로세스 자동화를 위한 강화학습 알고리즘과 외부 해석프로그램 간 인터페이스 구축)

  • Kim, Minsu;Choi, Sanghyun
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.34 no.6
    • /
    • pp.403-408
    • /
    • 2021
  • Currently, in the design process of civil structures such as bridges, it is common to make final products by repeating the process of redesigning, if the initial design is found to not meet the standards after a structural review. This iterative process extends the design time, and causes inefficient consumption of engineering manpower, which should be put into higher-level design, on simple repetitive mechanical work. This problem can be resolved by automating the design process, but the external analysis program used in the design process has been the biggest obstacle to such automation. In this study, we constructed an AI-based automation system for the bridge design process, including an interface that could control both a reinforcement learning algorithm, and an external analysis program, to replace the repetitive tasks in the current design process. The prototype of the system built in this study was developed for a 2-span RC Rahmen bridge, which is one of the simplest bridge systems. In the future, it is expected that the developed interface system can be utilized as a basic technology for linking the latest AI with other types of bridge designs.

Seismic Fragility Analysis of Rahmen-type Continuous Bridge Supported by High Piers (고교각으로 지지된 라멘형 연속교의 지진취약도 분석)

  • Kang, Pan-Seung;Hong, Ki-Nam;Yeon, Yeong-Mo
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.23 no.5
    • /
    • pp.84-95
    • /
    • 2019
  • This paper reports the process of seismic fragility analysis for the rahman-type continuous bridge system. The target structure was the five span highway bridge with maximum pier hight of 72m. OpenSees software was used for the nonlinear time history analysis. In this study, 50 ground motions are considered for nonlinear time history analysis. For each ground motion, PGA was scaled from 0.1g to 2.0g with intervals of 0.1g in order to consider a wide range of the seismic intensity measure. In addition, yield displacement and ultimate displacement of each pier were calculated through section analysis. Based on the result of non linear time history analysis and section analysis, damage condition of target bridge was classified according to the definition of damage condition proposed by Barbat et al. As a result, it was predicted that Extensive Damage occurred at P1 when 0.731 g earthquake occurred in the longitudinal direction. Based on the seismic fragility analysis results, it is found that the probability of occurrence of Extensive Damage in the 4,800 - year period earthquake was about 4.2%. Therefore the target bridge has enough safety for earthquake.