• Title/Summary/Keyword: Radon

Search Result 464, Processing Time 0.027 seconds

A Study on Indoor Radon Concentrations in Urban Area (도시 일부지역에서의 실내 라돈농도에 관한 연구)

  • 김순애;백남원
    • Journal of Environmental Health Sciences
    • /
    • v.28 no.2
    • /
    • pp.89-98
    • /
    • 2002
  • This study was taken in general hospital, hotel, shopping center, underground cafe, school, house, for the purpose of investigating the distribution of indoor radon concentration in urban area, by E-PERM which approved U.S. EPA, between August and November 1999. There are two sampling Places were exceed 148 ㏃/㎥(4 pCi/L; U.S EPA remedial level), difference mean is 24.0㏃/㎥ when compared with underground vs. aboveground indoor radon concentration in the same building and ratio is 1.6, so underground area is higher than aboveground (p<0.05). Influencing factors were examined. They related to the location of sampler(detector) open or near the door is lower radon concentration than inside portion, which explains probably open area has better ventilated air and dilutes indoor radon concentration. Temperature has a negative relationship (p<0.05) with indoor radon concentration and relative humidity has a positive (p<0.05) Simultaneously to investigate water radon concentration, collected piped-water and the results were very low, which is the same in piped-water concentration other countries. In conclusion, underground indoor radon concentration is higher than aboveground. Concentration was related to sampling spot, open portion is lower than inside. Higher the temperature, lower the indoor radon concentrations. On the other hand higher the relative humidity, higher the indoor radon concentrations. Indoor radon concentration is influenced by sampling point, temperature, relative humidity.

Fuzzy optimization of radon reduction by ventilation system in uranium mine

  • Meirong Zhang;Jianyong Dai
    • Nuclear Engineering and Technology
    • /
    • v.55 no.6
    • /
    • pp.2222-2229
    • /
    • 2023
  • Radon and radon progeny being natural radioactive pollutants, seriously affect the health of uranium miners. Radon reduction by ventilation is an essential means to improve the working environment. Firstly, the relational model is built between the radon exhalation rate of the loose body and the ventilation parameters in the stope with radon percolation-diffusion migration dynamics. Secondly, the model parameters of radon exhalation dynamics are uncertain and described by triangular membership functions. The objective functions of the left and right equations of the radon exhalation model are constructed according to different possibility levels, and their extreme value intervals are obtained by the immune particle swarm optimization algorithm (IPSO). The fuzzy target and fuzzy constraint models of radon exhalation are constructed, respectively. Lastly, the fuzzy aggregation function is reconstructed according to the importance of the fuzzy target and fuzzy constraint models. The optimal control decision with different possibility levels and importance can be obtained using the swarm intelligence algorithm. The case study indicates that the fuzzy aggregation function of radon exhalation has an upward trend with the increase of the cut set, and fuzzy optimization provides the optimal decision-making database of radon treatment and prevention under different decision-making criteria.

Radon Concentration Assessment of Studio Apartments surrounding a University (대학가 주변 원룸의 라돈(radon) 농도 평가)

  • Lee, Seokyong;Lee, Youngmoo;Park, Jihyun;Kim, Sunshin;Hong, Gayeon;Ahn, Hogi;Yang, Wonho
    • Journal of Environmental Health Sciences
    • /
    • v.39 no.2
    • /
    • pp.138-143
    • /
    • 2013
  • Objective: Building materials can generate radon in indoor environments. This study aims to assess the radon concentrations of studio apartments around a university. Methods: 25 studio apartments around a University in Gyoungsan, Korea were measured for concentrations of radon. We evaluated the radon concentrations by using short-term continuous radon monitors at the studio apartments around the university, and analyzed the correlation between indoor radon concentration and factors affecting it, such as year of construction. Results: The average concentration of radon was 2.03 pCi/L(75.11 $Bq/m^3$)${\pm}1.34$ in the studio apartments. This radon level was lower than the radon standard for public use facilities in Korea and US EPA's standard of 4 pCi/L. However the measured radon levels were much higher than those previously reported in conventional dwellings. There was a statistically correlation between year of construction and radon concentrations in studio apartment buildings. Conclusion: It is suggested that recently built studio apartments might be constructed with phosphogypsum board that features higher radon emissions, and occupants are highly exposed to radon.

Current Status of Radon Management in the 5678 Seoul Metropolitan Rapid Transit Subway (5678 서울도시철도 지하역사의 라돈 관리 현황)

  • Kim, Jun-Hyun;Yoon, Hun-Sik;Seo, Kang-Jin;Woo, Hee-Yeong;Kim, Man-Hwa;Park, Jong-Hun
    • Proceedings of the KSR Conference
    • /
    • 2011.05a
    • /
    • pp.1306-1312
    • /
    • 2011
  • Underground Subway station's air pollutants are introduced from the indoor or outdoor. And Radon is a major pollutant in the subway station. Radioactive substances Radon is occuring naturally in granite tunnel wall and underground water. Especially inert gas Radon that causes lung cancer in human is anywhere but 5678 S.M.R.T. tunnels deep and pass through the granite plaque have a lot of Radon. The Radon concentration is determined by the following reasons : radon content of soil and concrete, underground water, ventilation, pressure difference, building structure, temperature, etc. So Radon concentration is hard to predict. And we can't only ventilate owing to era of high oil prices. This study focuses on our efforts for the reduction of Radon concentration. And the purpose is to provide basically datas of specially managed 15 subway station's Radon concentration.

  • PDF

Effects of radon and its management (라돈의 영향과 관리)

  • Cho, Seung Yeon;Kim, Seon Hong;Kim, Min Jun
    • Journal of odor and indoor environment
    • /
    • v.16 no.4
    • /
    • pp.297-307
    • /
    • 2017
  • As radon is a naturally occurring radioactive gas that can cause lung cancer and is classified as a Group 1 carcinogen, it is essential for the public to be aware of what radon is, and how to manage radon. Therefore, general information on radon, as well as its health risks, measurement methods, mitigation methods and suggestions for its management are addressed in this article. Over the last one to two decades, a number of wide-ranging studies on radon measurement and mitigation have been conducted in Korea, and the results of each study are comparable to the research achievements of other developed countries. For this reason, it is time to systematically establish a well-made Korean radon management organization.

A Study on Mitigation Methods of Indoor Radon Concentration in Residential Buildings(I) - Test Cell Study (주거용 건축물의 실내 라돈농도 경감방안에 관한 연구(I) -Test Cell Study)

  • Cha, Dong-Won
    • KIEAE Journal
    • /
    • v.1 no.2
    • /
    • pp.21-28
    • /
    • 2001
  • Naturally-ocurring short-lived decay products of radon gas in indoor air are the dominant source of ionizing radiation exposure to the general public. It is written in BEIR VI Report(l999l the radon progeny were identified as the second cause of lung cancer next to cigarette or 10 % to 14 %(15,400 to 21,800 persons p.a.) of all lung cancer deaths in USA. Indoor radon concentrations in houses typically result from radon gaining access to houses mainly from the underlying soil. In the States, they have "Indoor Radon Abatement Act" which was converted from "Toxic Substance Control Act" in 1988 to establish the national long-term goal that indoor air should be as free of radon as the ambient air outside of buildings. To review and study techniques for controlling radon, two test cells were constructed for a series of tests and are under measuring indoor and soil gas (underneath of floor slab)radon concentrations according to EPA's measurement protocol. In this paper, important theoretical studies are previewed and the following paper will explain the test results and confirm the theories reviewed to find out suitable coefficients. On the basis of test analysis, it will be described and evaluated various techniques that can be used to mitigate elevated indoor concentration of radon including the control of radon and its decay products.

  • PDF

Measurement and Spatial Analysis of Uranium-238 and Radon-222 of Soil in Seoul

  • Oh, Dal-Young;Shin, Kyu-Jin;Jeon, Jae-Sik
    • Journal of Soil and Groundwater Environment
    • /
    • v.22 no.1
    • /
    • pp.33-40
    • /
    • 2017
  • Identification of radon in soil provides information on the areas at risk for high radon exposure. In this study, we measured uranium-238 and radon-222 concentrations in soil to assess their approximate levels in Seoul. A total of 246 soil samples were taken to analyze uranium with ICP-MS, and 120 measurements of radon in soil were conducted with an in-situ radon detector, Rad7 at a depth of 1-1.5 m. The data were statistically analyzed and mapped, layered with geological classification. The range of uranium in soil was from 0.0 to 8.5 mg/kg with a mean value of 2.2 mg/kg, and the range of radon in soil was from 1,887 to $87,320Bq/m^3$ with a mean value of $18,271Bq/m^3$. The geology had a distinctive relationship to the uranium and radon levels in soil, with the uranium and radon concentrations in soils overlying granite more than double those of soils overlying metamorphic rocks.

Effects of radon on soil microbial community and their growth

  • Lee, Kyu-Yeon;Park, Seon-Yeong;Kim, Chang-Gyun
    • Environmental Engineering Research
    • /
    • v.25 no.1
    • /
    • pp.29-35
    • /
    • 2020
  • The aim of this study was to estimate the microbial metabolic activity of indigenous soil microbes under the radon exposure with different intensity and times in the secured laboratory radon chamber. For this purpose, the soil microbes were collected from radon-contaminated site located in the G county, Korea. Thereafter, their metabolic activity was determined after the radon exposure of varying radon concentrations of 185, 1,400 and 14,000 Bq/㎥. The average depth variable concentrations of soil radon in the radon-contaminated site were 707, 860 and 1,185 Bq/㎥ from 0, 15, and 30 cm in deep, respectively. Simultaneously, the soil microbial culture was mainly composed of Bacillus sp., Brevibacillus sp., Lysinibacillus sp., and Paenibacillus sp. From the radon exposure test, higher or lower radiation intensities compared to the threshold level attributed the metabolic activity of mixed microbial consortium to be reduced, whereas the moderate radiation intensity (i.e. threshold level) induced it to the pinnacle point. It was decided that radon radiation could instigate the microbial metabolic activity depending on the radon levels while they were exposed, which could consequently address that the certain extent of threshold concentration present in the ecosystem relevant to microbial diversity and population density to be more proliferated.

Prediction of Indoor Radon Concentration through the Exhalation from Korean Yellow Residual Soil, Hwangtoh as a Building Material

  • LEE, Ju Yong;KANG, Seog Goo
    • Journal of the Korean Wood Science and Technology
    • /
    • v.49 no.2
    • /
    • pp.122-133
    • /
    • 2021
  • The radon gas from nature mainly considers a cause of radon problems, and it is closely affect human life cycle. Korean yellow residual soil, Hwangtoh, widely used as a building material, is considered to be one of major sources of indoor radon. However, there have, as yet, been no studies about radon from Hwangtoh in mass market brands. Here, we investigated the indoor radon concentrations and exhalation rates in four Hwangtohs from different brand names and regional features. The Closed Chamber Method (CCM) conducted by a Continuous Radon Monitor (CRM) has been used for the rates of radon exhalation. Based on equations of previous references, the indoor radon concentrations were deducted. As a result, the radon surface exhalation rates resulted in the 1.4208 to 3.0293 Bq·㎡·h-1 range. Significant differences were found among Hwangtohs according to production regions. Materials with higher radon concentration required a longer time to reach a quasi-steady state in a given environment, in other words, the number of half-life cycles increased from a set starting point. The experimentally identified Hwangtohs demonstrated its safety for construction purposes. There exists, so far, a possibility to exert influence radon emanation due to unidentified factors. Therefore, it is necessary to corroborate with more research by increasing the number of Hwangtohs, considering the other references reported high radon exhalation rates. In addition, it is highly recommended that the radon exhalation rates should be measured for all building materials for preventing human health before the material usage.

Assessment of Human Exposures to Indoor Radon Released from Groundwater (지하수로부터의 실내 라돈오염시 인체노출평가)

  • 유동한;김상준;양지원
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.17 no.3
    • /
    • pp.241-249
    • /
    • 2001
  • A report by the National Research Council in the United States suggested that many lung cancer deaths each year are associated with breathing radon in indoor air. Most of the indoor radon comes directly from soil beneath the basement of foundation. Recently, radon released from groundwater is found to contribute to the total inhalation risk from indoor air. This study presents the assessment of a exposure to radon released from the groundwater into indoor air. At first, a 3-compartment model is describe the transfer and distribution if radon released from groundwater in a house through showering, washing clothes, and flushing toilets. The model is used to estimate a daily human exposure through inhalation of such radon for adults based on two sets of exposure scenarios, Finally, a sensitivity analysis is used to identify important parameters. The results obtained from the study would help to increase the understanding of risk assessment issues associated with the indoor radon released from groundwater.

  • PDF