• Title/Summary/Keyword: Radon(Rn)

Search Result 86, Processing Time 0.023 seconds

The Comparative Analysis of Rn-222 in Water for Public Supply Pump Houses of Ulaanbaatar City

  • Oyunchimeg, Ts.;Khuukhenkhuu, G.;Norov, N,
    • Progress in Medical Physics
    • /
    • v.14 no.1
    • /
    • pp.51-53
    • /
    • 2003
  • The results of the measured specific activities of Rn-222 in water for public water supply pump houses (wells) of Ulaanbaatar City, Mongolia using the HP-Ge gamma-spectrometer, are described. The average of the specific radioactivies for the Rn-222 were for the station “Centre” 82.59 Bq/l, station “Combinat” 91.35 Bq/l and station “Makh” 158.25 Bq/l, respectively.

  • PDF

Air Content and Fluidity Properties of Cement Matrix according to Anthracite Particle-size (안트라사이트 입도에 따른 시멘트 경화체의 공기량 및 유동성 특성)

  • Kyoung, In-Soo;Pyeon, Su-Jeong;Lee, Sang-Soo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2017.11a
    • /
    • pp.92-93
    • /
    • 2017
  • Recently, there has been an increasing interest in natural radioactive gas radon(Rn-222), the problem of indoor air quality pollution to worldwide. It has been scientifically proven to be hazardous to various diseases such as lung cancer and skin cancer if the human body is exposed to long-term accumulation of atomic nuclei due to the destruction of radon and alpha lines. Based on the indoor air quality control policy, this study is a basic experiment in the manufacture of a selective elimination function to containing radon adsorption and reduction of radon concentration, which is used to absorb radioactive isotopes such as phosphorus and radon in indoor environment.

  • PDF

Assessment of radon potential in the areas covered with granite and gneiss in Korea

  • Je Hyun-Kuk;Chon Hyo-Taek
    • 한국지구물리탐사학회:학술대회논문집
    • /
    • 2003.11a
    • /
    • pp.501-503
    • /
    • 2003
  • Soil-gas radon level and other atmospheric factors have been measured at residual soil profiles that overlie granite bedrock which consists of major geology in Korea for 6 months from November, 2000 to April, 2001. Seasonal variations of soil-gas radon concentration are generally of greater magnitude than day-to-day fluctuations. The highest radon concentrations of 5,131 pCi/L measured during winter season and the lowest radon concentrations of 107 pCi/L during spring season. Two study areas, Bongcheon-dong(granite bedrock) and Seongnam-Yongin(gneiss bedrock) were investigated to assess the radon potential according to their field survey and emanation tests. The mean values of radon decrease in sequentially from Suji-A(813 pCi/L)>Suji-B(757 pCi/L)>Bundang-B(691 pCi/L)>Bundang-A(643 pCi/L)>Bongcheon-dong(513 pCi/L). Estimated soil-gas radon potential using maximum radon emanation ratios of each study area decreases in the order of Bongcheondong(950 pCi/L)>Suji-B(524 pCi/L)>Bundang-A(437 pCi/)>Bundang-B(259 pCi/L)>Suji-A(230 pCi/L) areas. The values of indoor radon and its daughter product concentrations in Bongcheon-dong area show that indoor basement rooms in poor ventilation condition could be classified as extremely high radon risk location of more than 4 pCi/L Rn and 0.02 WL.

  • PDF

Environmental Characteristics of Naturally Occurring Radioactive Materials (238U, 222Rn) Concentration in Drinking Groundwaters of Metamorphic Rock Areas: Korea (국내 변성암 지역 음용지하수 중 자연방사성물질(238U, 222Rn)의 환경 특성 연구)

  • Ju, Byoung Kyu;Kim, Moon Su;Jeong, Do Hwan;Hong, Jung Ki;Kim, Dong Su;Noh, Hoe Jung;Yoon, Jeong Ki;Kim, Tae Seung
    • Journal of Soil and Groundwater Environment
    • /
    • v.18 no.3
    • /
    • pp.82-92
    • /
    • 2013
  • This study has investigated naturally occurring radioactive materials (N.O.R.M; $^{238}U$, $^{222}Rn$) for 353 drinking groundwater wells in metamorphic rock areas in Korea. Uranium concentrations ranged from N.D (not detected) to 563.56 ${\mu}g/L$ (median value, 0.68 ${\mu}g/L$) and radon concentrations ranged from 108 to 11,612 pCi/L (median value, 1,400 pCi/L). Uranium and radon concentrations in the groundwater generally are similar to USA with similar geological setting. Uranium concentrations in 9 wells (2.6%) exceeded 30 ${\mu}g/L$, which is the maximum contaminant level (MCL) by the US environmental protection agency (EPA), radon concentrations in 46 wells (13%) exceeded 4,000 pCi/L, which is the Alternative MCL (AMCL) by the US.EPA. The log-log correlation coefficient between uranium and radon was 0.32. The correlation coefficient between uranium and pH was 0.12 and the correlation coefficient between radon and temperature was -0.01. The correlation coefficient between uranium and $HCO_3$ was 0.09 and the correlation coefficient between uranium and Ca was 0.11. The median value of uranium was high Chung-Buk (1.78 ${\mu}g/L$), Gyeong-Buk (1.37 ${\mu}g/L$), In-Cheon (1.06 ${\mu}g/L$) for each province. On the other hand, the median value of radon was high In-Cheon (2,962 pCi/L), Chung-Buk (2,339 pCi/L), Jeon-Buk (2,165 pCi/L) for each province. Jeon-Buk for log-log correlation coefficient is the highest (0.63) among provinces.

Study on 222Rn reduction rate in boiling groundwater (가열에 의한 지하수 중 222Rn 제거율 고찰)

  • Kim, MoonSu;Kim, Hyun-Koo;Park, Sun-Wha;Kim, Hyoung-Seop;Ju, Byoung-Kyu;Kim, Dong-Su;Cho, Sung-Jin;Yang, Jae-Ha;Kwon, Oh-Sang;Kim, Tae-Seung
    • Analytical Science and Technology
    • /
    • v.28 no.5
    • /
    • pp.353-360
    • /
    • 2015
  • Boiling is an efficient removal method to reduce radon in groundwater when ventilating indoor air. 13 groundwater samples with various radon concentrations were used to evaluate the reduction rate of radon with heating temperature and time. The groundwater samples were obtained by Bladder pump and on-situ measurements such as dissolved oxygen (DO) and hydrogen concentration (pH) and so on were carried out by a flow cell system isolated from the ambient atmosphere environment. All samples for measuring radon in groundwater were analyzed by liquid scintillation counter (LSC). The experiment result showed that increasing groundwater temperature enhanced radon removal rate but the initial radon concentration with high level lowered the removal rate. This means that radon reduction in groundwater by heating needs more heating energy and longer heating time with radon concentrations. Radon removal rate in groundwater, therefore, mainly depends on the initial radon concentration, heating temperature, and heating time.

A Preliminary Investigation of Radon Concentration for Some Agricultural Greenhouses in Jeju Island (제주지역 일부 농업 시설 내 라돈 농도 예비 조사)

  • Kang, Tae-Woo;Song, Myeong-Han;Kim, Tae-Hyoung;Chang, Byung-Uck;Kim, Young-Jae;Kim, Geun-Ho;Park, Jae-Woo
    • Korean Journal of Environmental Agriculture
    • /
    • v.31 no.1
    • /
    • pp.9-15
    • /
    • 2012
  • BACKGROUND: A preliminary investigation of the radon ($^{222}Rn$) concentration has been conducted, employing solid-state nuclear-track detectors (SSNTD) and a continuous radon monitor (CRM), for fourteen randomly selected agricultural greenhouses in Jeju Island, where the underground-air was used for air conditioning and $CO_2$ supplement. METHODS AND RESULTS: The SSNTD was used to measure the average radon concentration for three months and the CRM was used for an instantaneous measurement. In order to obtain the radon concentration of a greenhouse, the SSNTDs were placed at a number of evenly distributed points inside the greenhouse and the mean of the measured values was taken. In addition, in order to assess the radon concentration of the underground-air itself, measurement was also made at the borehole of the underground-air in each agricultural facility, employing both the SSNTD and CRM. It is found that the radon concentration of the greenhouses ranges higher than those not using the underground-air and the average of Korean dwellings. While the radon concentration of most agricultural facilities is still lower than the reference level (1,000 Bq/$m^3$) recommended by the International Radiation Protection Committee (ICRP), three facilities at one site show higher concentrations than the reference level. The three-month-averaged radon concentration and the instantaneous radon concentration of the underground-air itself ranges 1,228- 5,259 and 3,322-17,900 Bq/$m^3$, respectively, and regional variation is more significant. CONCLUSION: From this results, radon concentration of the underground-air is assumed that it is associated with the geological characteristics and the boring depth of the region located of their.

A preliminary study on real-time Rn/Tn discriminative detection using air-flow delay in two ion chambers in series

  • Sopan Das ;Junhyeok Kim ;Jaehyun Park ;Hojong Chang;Gyuseong Cho
    • Nuclear Engineering and Technology
    • /
    • v.54 no.12
    • /
    • pp.4644-4651
    • /
    • 2022
  • Due to its short half-life, thoron gas has been assumed to have negligible health hazards on humans compared to radon. But, one of the decay products with a long half-life can make it to be transported to a long distance and to cause a severe internal dose through respiration. Since most commercial radon detectors can not discriminate thoron signals from radon signals, it is very common to overestimate radon doses which in turn result in biased estimation of lung cancer risk in epidemiological studies. Though some methods had been suggested to measure thoron and radon separately, they could not be used for real-time measurement because of CR-39 or LR-115. In this study, an effective method was suggested to measure radon and thoron separately from the free air. It was observed that the activity of thoron decreases exponentially due to delay time caused by a long pipe between two chambers. Therefore from two ion chambers apart in time, it was demonstrated that thoron and radon could be measured separately and simultaneously. We also developed a collimated alpha source and with this source and an SBD, we could convert the ion chamber reading to count rate in cps.

Diurnal and Seasonal Variations of the Radon Progeny Concentrations in the open Atmosphere and the Influence of Meteorological Parameters (대기중 라돈자핵종 농도의 일일 및 계절적 변화와 기상인자가 미치는 영향)

  • Lee, Dong-Myung;Kim, Chang-Kyu;Rho, Byung-Hwan;Lee, Seung-Chan;Kang, Hee-Dong
    • Journal of Radiation Protection and Research
    • /
    • v.25 no.4
    • /
    • pp.207-216
    • /
    • 2000
  • Continuous measurements of radon progeny concentrations in the open atmosphere and measurements of meteorological parameters were performed in Tajeon, using a continuous gross alpha/beta aerosol monitor and a weather measuring equipment between July 1999 and July 2000. These data were analyzed for half-hourly, daily, and seasonal variations. The distribution of daily averaged equilibrium equivalent radon concentration$(EEC_{Rn})$ had an arithmetic mean value of $11.3{\pm}5.86Bqm^{-3}$ with the coefficient of variation of about 50% and the geometric mean was $10.3Bqm^{-3}$. The $EEC_{Rn}$ varies between 0.83 and $43.3Bqm^{-3}$, depending on time of day and weather conditions. Half-hourly averaged data indicated a diurnal pattern with the outdoor $EEC_{Rn}$ reaching a maximum at sunrise and a minimum at sunset. The pattern of the seasonal variation of the $EEC_{Rn}$ in Taejon had a tendency of minimum concentration occurring in the summer(July) and maximum concentration occurring in the late autumn(November). But the seasonal variation of the $EEC_{Rn}$ is expect to vary greatly from place to place. The outdoor $EEC_{Rn}$ was highly dependent on the local climate features. Particularly the $EEC_{Rn}$an rapidly drops less than $5Bqm^{-3}$ in case of blowing heavily higher than wind speed of $6msec^{-1}$, reversely the days with more than $30Bqm^{-3}$ were at a calm weather condition with the wind speed of lower than $1msec^{-1}$.

  • PDF

A Study of the Rn-222 and Ra-226 Analysis in Aqueous Samples with a Low-Level Liquid Scintillation Counter and Pulse-Shape Analysis (저준위 액체섬광계수기와 파형분석법을 이용한 수용액 중 라돈-222 및 라듐-226의 분석법 연구)

  • Shin, Hyun-Sang;Lee, Chang-Woo;Lee, Myung-Ho;Cho, Yung-Hyun;Hong, Kwang-Hee;Choi, Geun-Sik
    • Analytical Science and Technology
    • /
    • v.12 no.5
    • /
    • pp.428-435
    • /
    • 1999
  • A method for measuring Rn-222 and Ra-226 in aqueous sample using liquid scintillation counting technique has been studied. The Rn-222 was extracted easily from the water sample (10 mL) by 12 mL of xylene based organic scintillant. After radioactive equilibrium between Rn-222 and its alpha emitting decay products for three hours, the alpha activity from Rn-222 and its decay products were measured in a scintillation vial using the Wallae $1220^{TM}$ Quantulus liquid scintillation counter. Ra-226 concentration in aqueous sample was determined, after isolation of Ra-226 from the sample matrix, by extraction the ingrowth of the Rn-222 and its alpha emitting decay products with xylene based organic scintillant. The optimum pulse-shape analysis (PSA) value was evaluated by the figure of merit (FM) criterion. Minimum detectable activity (MDA) is about 0.14 Bq/L (3.78 pCi) for the region of Rn-222 and its alpha emitting decay products and 0.06 Bq/L (1.63 pCi) for the region of Po-214 respectively, with 200 min, counting time at PSA level 100 in the low-diffusion polyethylene vial and xylene based cocktail solution. Experiment on the optimum sample-cocktail volume ratio, the influence of agitation and the diffusion of radon from vial were carried out.

  • PDF

Radon in Mineral Spring Water of Mongolia

  • Oyunchimeg, Ts.;Khuukhenkhuu, G.;Norov, N.;Ajnai, l.
    • Proceedings of the Korean Society of Medical Physics Conference
    • /
    • 2002.09a
    • /
    • pp.279-281
    • /
    • 2002
  • The results of the specific radioactivity study for Rn-222 in mineral spring water of Khalzan mountain and Janchivlan of Mongolia, using the HP-Ge gamma-spectrometer, are discussed. Some physical and chemical properties in some sample of mineral spring water are determined.

  • PDF