• Title/Summary/Keyword: Radix trie

Search Result 1, Processing Time 0.015 seconds

Enhance Health Risks Prediction Mechanism in the Cloud Using RT-TKRIBC Technique

  • Konduru, Venkateswara Raju;Bharamgoudra, Manjula R
    • Journal of information and communication convergence engineering
    • /
    • v.19 no.3
    • /
    • pp.166-174
    • /
    • 2021
  • A large volume of patient data is generated from various devices used in healthcare applications. With increase in the volume of data generated in the healthcare industry, more wellness monitoring is required. A cloud-enabled analysis of healthcare data that predicts patient risk factors is required. Machine learning techniques have been developed to address these medical care problems. A novel technique called the radix-trie-based Tanimoto kernel regressive infomax boost classification (RT-TKRIBC) technique is introduced to analyze the heterogeneous health data in the cloud to predict the health risks and send alerts. The infomax boost ensemble technique improves the prediction accuracy by finding the maximum mutual information, thereby minimizing the mean square error. The performance evaluation of the proposed RT-TKRIBC technique is realized through extensive simulations in the cloud environment, which provides better prediction accuracy and less prediction time than those provided by the state-of-the-art methods.