• Title/Summary/Keyword: Radius of Movement

Search Result 104, Processing Time 0.024 seconds

Statistical Characteristics of East Sea Mesoscale Eddies Detected, Tracked, and Grouped Using Satellite Altimeter Data from 1993 to 2017 (인공위성 고도계 자료(1993-2017년)를 이용하여 탐지‧추적‧분류한 동해 중규모 소용돌이의 통계적 특성)

  • LEE, KYUNGJAE;NAM, SUNGHYUN;KIM, YOUNG-GYU
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.24 no.2
    • /
    • pp.267-281
    • /
    • 2019
  • Energetic mesoscale eddies in the East Sea (ES) associated with strong mesoscale variability impacting circulation and environments were statistically characterized by analyzing satellite altimeter data collected during 1993-2017 and in-situ data obtained from four cruises conducted between 2015 and 2017. A total of 1,008 mesoscale eddies were detected, tracked, and identified and then classified into 27 groups characterized by mean lifetime (L, day), amplitude (H, m), radius (R, km), intensity per unit area (EI, $cm^2/s^2/km^2$), ellipticity (e), eddy kinetic energy (EKE, TJ), available potential energy (APE, TJ), and direction of movement. The center, boundary, and amplitude of mesoscale eddies identified from satellite altimeter data were compared to those from the in-situ observational data for the four cases, yielding uncertainties in the center position of 2-10 km, boundary position of 10-20 km, and amplitude of 0.6-5.9 cm. The mean L, H, R, EI, e, EKE, and APE of the ES mesoscale eddies during the total period are $95{\pm}104$ days, $3.5{\pm}1.5cm$, $39{\pm}6km$, $0.023{\pm}0.017cm^2/s^2/km^2$, $0.72{\pm}0.07$, $23{\pm}21TJ$, and $588{\pm}250TJ$, respectively. The ES mesoscale eddies tend to move following the mean surface current rather than propagating westward. The southern groups (south of the subpolar front) have a longer L, larger H, R, and higher EKE, APE; and stronger EI than those of the northern groups and tend to move a longer distance following surface currents. There are exceptions to the average characteristics, such as the quasi-stationary groups (the Wonsan Warm, Wonsan Cold, Western Japan Basin Warm, and Northern Subpolar Frontal Cold Eddy groups) and short-lived groups with a relatively larger H, higher EKE, and APE and stronger EI (the Yamato Coastal Warm, Central Yamato Warm, and Eastern Japan Basin Coastal Warm eddy groups). Small eddies in the northern ES hardly resolved using the satellite altimetry data only, were not identified here and discussed with potential over-estimations of the mean L, H, R, EI, EKE, and APE. This study suggests that the ES mesoscale eddies 1) include newly identified groups such as the Hokkaido and the Yamato Rise Warm Eddies in addition to relatively well-known groups (e.g., the Ulleung Warm and the Dok Cold Eddies); 2) have a shorter L; smaller H, R, and lower EKE; and stronger EI and higher APE than those of the global ocean, and move following surface currents rather than propagating westward; and 3) show large spatial inhomogeneity among groups.

EFFECT OF CROSS-SECTIONAL AREA OF 6 NICKEL-TITANIUM ROTARY INSTRUMENTS ON THE FATIGUE FRACTURE UNDER CYCLIC FLEXURAL STRESS: A FRACTOGRAPHIC ANALYSIS (반복 굽힘 스트레스 하에서 전동식 니켈-티타늄 파일의 단면적의 크기가 피로파절에 미치는 영향 : 파절역학 분석)

  • Hwang, Soo-Youn;Oh, So-Ram;Lee, Yoon;Lim, Sang-Min;Kum, Kee-Yeon
    • Restorative Dentistry and Endodontics
    • /
    • v.34 no.5
    • /
    • pp.424-429
    • /
    • 2009
  • This study aimed to assess the influence of different cross-sectional area on the cyclic fatigue fracture of Ni-Ti rotary files using a fatigue tester incorporating cyclical axial movement. Six brands of Ni-Ti rotary files (ISO 30 size with. 04 taper) of 10 each were tested: Alpha system (KOMET), HeroShaper (MicroMega), K3 (SybronEndo), Mtwo (VDW), NRT (Mani), and ProFile (Dentsply). A fatigue-tester (Denbotix) was designed to allow cyclic tension and compressive stress on the tip of the instrument. Each file was mounted on a torque controlled motor (Aseptico) using a 1:20 reduction contra-angle and was rotated at 300 rpm with a continuous, 6 mm axial oscillating motion inside an artificial steel canal. The canal had a $60^{\circ}$ angle and a 5 mm radius of curvature. Instrument fracture was visually detected and the time until fracture was recorded by a digital stop watch. The data were analyzed statistically. Fractographic analysis of all fractured surfaces was performed to determine the fracture modes using a scanning electron microscope. Cross-sectional area at 3 mm from the tip of 3 unused Ni-Ti instruments for each group was calculated using Image-Pro Plus (Imagej 1.34n, NIH). Results showed that NRT and ProFile had significantly longer time to fracture compared to the other groups (p < .05). The cross-sectional area was not significantly associated with fatigue resistance. Fractographycally, all fractured surfaces demonstrated a combination of ductile and brittle fracture. In conclusion, there was no significant relationship between fatigue resistance and the cross-sectional area of Ni-Ti instruments under experimental conditions.

Comparison of Doses of Single Scan PBS and Layered Rescanning PBS Using Moving Phantom in Proton Therapy (양성자 치료에서 Moving Phantom을 이용한 Single Scan PBS와 Layered Rescanning PBS의 선량비교)

  • Kim, Kyeong Tae;Kim, Seon Yeong;Kim, Dae Woong;Kim, Jae Won;Park, Ji Yeon;Jeon, Sang Min
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.31 no.1
    • /
    • pp.43-49
    • /
    • 2019
  • Purpose : We apply the Layered Rescanning PBS designed to complement the Pencil Beam Scanning(PBS), which is vulnerable to moving organs with the Moving Phantom, and compare the homogeneity with the single scan PBS. Methods and materials: Matrix X (IBA, Belgium) and Moving Phantom (standard imaging, USA) were used. A dose of 200 cGy was measured in the AP direction on a hypothetical tumor $10{\times}10{\times}5cm$. The plan type was planned as 4 kinds of sinlge scan PBS, rescan number 4, 8, 12 times. Were measured three times for each types. During the measurement, the respiratory cycle of the Moving Phantom was generally set to 4 seconds per cycle, and the movement radius in the S-I direction was set to 2 cm. In addition, beam on time was measured. Results : The mean values of $D_{max}$ in the PTV were $246.47{\pm}18.8cGy$, $223.43{\pm}8.92cGy$, and $222.47{\pm}7.7cGy$, $213.9{\pm}6.11cGy$ and the mean values of $D_{min}$ were $165.53{\pm}4.32cGy$, $173.13{\pm}11.94cGy$, $184.13{\pm}8.04cGy$, $182.67{\pm}4.38cGy$ and the mean values of $D_{mean}$ $192.77{\pm}6.98cGy$, $196.7{\pm}4.01cGy$, $198.17{\pm}4.96cGy$, $195.77{\pm}3.15cGy$ respectively. As the number of rescanning increased, the Homogeneity Index converged to 1. The beam on time was measured as 2:15, 3:15, 4:30, 5:37 on average. In the measurement process, in the low dose layer of the MU, the problem was found that it was not rescanned as many times as the set number of rescan. Conclusions : In the treatment of tumors with long-term movements, the application of layered rescanning PBS showed a more uniform dose distribution than single scan PBS. And as the number of rescan increase, the distribution of homogeneity is uniform. Compared with single scan plan and 12 rescan plan, HI value was improved by 0.32. Further studies are expected to be applicable to patients who can not be treated with respiratory synchronous radiation therapy.

Experimental Study of Flip-Bucket Type Hydraulic Energy Dissipator on Steep slope Channel (긴구배수로 감세공의 Filp Bucket형 이용연구)

  • 김영배
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.13 no.1
    • /
    • pp.2206-2217
    • /
    • 1971
  • Spillway and discharge channel of reservoirs require the Control of Large volume of water under high pressure. The energies at the downstream end of spillway or discharge channel are tremendous. Therefore, Some means of expending the energy of the high-velocity flow is required to prevent scour of the riverbed, minimize erosion, and prevent undermining structures or dam it self. This may be accomplished by Constructing an energy dissipator at the downstream end of spillway or discharge channel disigned to dissipated the excessive energy and establish safe flow Condition in the outlet channel. There are many types of energy dissipators, stilling basins are the most familar energy dissipator. In the stilling basin, most energies are dissipated by hydraulic jump. stilling basins have some length to cover hydraulic jump length. So stilling basins require much concrete works and high construction cost. Flip bucket type energy dissipators require less construction cost. If the streambed is composed of firm rock and it is certain that the scour will not progress upstream to the extent that the safety of the structure might be endangered, flip backet type energy dissipators are the most recommendable one. Following items are tested and studied with bucket radius, $R=7h_2$,(medium of $4h_2{\geqq}R{\geqq}10h_2$). 1. Allowable upstream channel slop of bucket. 2. Adequate bucket lip angle for good performance of flip bucket. Also followings are reviwed. 1. Scour by jet flow. 2. Negative pressure distribution and air movement below nappe flow. From the test and study, following results were obtained. 1. Upstream channel slope of bucket (S=H/L) should be 0.25<H/L<0.75 for good performance of flip bucket. 2. Adequated lip angle $30^{\circ}{\sim}40^{\circ}$ are more reliable than $20^{\circ}{\sim}30^{\circ}$ for the safety of structures.

  • PDF