• 제목/요약/키워드: Radius influence

검색결과 339건 처리시간 0.024초

Identifiability of Ludwik's law parameters depending on the sample geometry via inverse identification procedure

  • Zaplatic, Andrija;Tomicevic, Zvonimir;Cakmak, Damjan;Hild, Francois
    • Coupled systems mechanics
    • /
    • 제11권2호
    • /
    • pp.133-149
    • /
    • 2022
  • The accurate prediction of elastoplasticity under prescribed workloads is essential in the optimization of engineering structures. Mechanical experiments are carried out with the goal of obtaining reliable sets of material parameters for a chosen constitutive law via inverse identification. In this work, two sample geometries made of high strength steel plates were evaluated to determine the optimal configuration for the identification of Ludwik's nonlinear isotropic hardening law. Finite element model updating(FEMU) was used to calibrate the material parameters. FEMU computes the parameter changes based on the Hessian matrix, and the sensitivity fields that report changes of computed fields with respect to material parameter changes. A sensitivity analysis was performed to determine the influence of the sample geometry on parameter identifiability. It was concluded that the sample with thinned gauge region with a large curvature radius provided more reliable material parameters.

Effect of cross-section geometry on the stability performance of functionally graded cylindrical imperfect composite structures used in stadium construction

  • Ying Yang;Yike Mao
    • Geomechanics and Engineering
    • /
    • 제35권2호
    • /
    • pp.181-194
    • /
    • 2023
  • The primary objective of this study is to examine the influence of geometry on the stability characteristics of cylindrical microstructures. This investigation entails a stability analysis of a bi-directional functionally graded (BD-FG) cylindrical imperfect concrete beam, focusing on the impact of geometry. Both the first-order shear deformation beam theory and the modified coupled stress theory are employed to explore the buckling and dynamic behaviors of the structure. The cylinder-shaped imperfect beam is constructed using a porosity-dependent functionally graded (FG) concrete material, wherein diverse porosity voids and material distributions are incorporated along the radial axis of the beam. The radius functions are considered in both uniform and nonuniform variations, reflecting their alterations along the length of the beam. The combination of these characteristics leads to the creation of BD-FG configurations. In order to enable the assessment of stability using energy principles, a numerical technique is utilized to formulate the equations for partial derivatives (PDEs).

MCST bending formulation of a cylindrical micro-shell based on TSDT

  • Mohammad Arefi
    • Earthquakes and Structures
    • /
    • 제26권4호
    • /
    • pp.299-309
    • /
    • 2024
  • The present paper develops application of third-order shear deformation theory (TSDT) and modified couple stress theory (MCST) to size-dependent bending analysis of a functionally graded cylindrical micro-shell. The radial and axial displacement components are described based on TSDT for more accurate analysis. The effect of small scales is accounted based on MCST. The principle of virtual work is used for derivation of bending governing equations. The solution is presented for a simply-supported boundary condition to account the influence of various important parameters such as micro length scale parameter, in-homogeneous index and some dimensionless geometric parameters such as length to radius and length to thickness ratios on the bending results. A comparative analysis is presented to examine the effect of order of employed shear deformation theory on the axial and radial displacements.

완전 용입 십자형 필릿용접부에서 피로파괴특성과 피로수명에 관한 연구 (A Study on Characteristics of Fatigue Failure and Fatigue Life in Full Penetrated Cruciform Fillet Weld Zone)

  • 이용복
    • 한국가스학회지
    • /
    • 제16권4호
    • /
    • pp.16-22
    • /
    • 2012
  • 용접기술의 발달과 더불어 기계, 교량, 선박 그리고 가스설비 등의 제작공정을 위하여 용접의 이용이 증가하고 있다. 따라서 그들의 용접 구조물 제작을 위하여 높은 생산성과 안전설계를 고려하는 용접 법을 개발하는 것이 요구되고 있다. 본 연구에서는 재료 두께, 용접층수, 하중 방향 그리고 토우부의 노치 반경과 관련하여 완전 용입 십자형 필릿 용접부의 피로강도 및 피로수명의 특성에 대하여 기초적으로 고찰하였다. 대부분의 피로파괴는 십자형 필릿 용접의 토우부에서 발생하였다. 피로강도 및 피로수명은 토우 부의 노치 반경과 플랭크 각에 의한 응력집중의 영향을 받고 있다. 토우부의 금속이 다층 용접에 의하여 어닐링 되고 확산 되었으며 그 결과 침상 페라이트 조직이 형성되어 피로강도와 피로수명을 향상시켰다.

CFD simulations of the flow field of a laboratory-simulated tornado for parameter sensitivity studies and comparison with field measurements

  • Kuai, Le;Haan, Fred L. Jr.;Gallus, William A. Jr.;Sarkar, Partha P.
    • Wind and Structures
    • /
    • 제11권2호
    • /
    • pp.75-96
    • /
    • 2008
  • A better understanding of tornado-induced wind loads is needed to improve the design of typical structures to resist these winds. An accurate understanding of the loads requires knowledge of near-ground tornado winds, but observations in this region are lacking. The first goal of this study was to verify how well a CFD model, when driven by far field radar observations and laboratory measurements, could capture the flow characteristics of both full scale and laboratory-simulated tornadoes. A second goal was to use the model to examine the sensitivity of the simulations to various parameters that might affect the laboratory simulator tornado. An understanding of near-ground winds in tornadoes will require coordinated efforts in both computational and physical simulation. The sensitivity of computational simulations of a tornado to geometric parameters and surface roughness within a domain based on the Iowa State University laboratory tornado simulator was investigated. In this study, CFD simulations of the flow field in a model domain that represents a laboratory tornado simulator were conducted using Doppler radar and laboratory velocity measurements as boundary conditions. The tornado was found to be sensitive to a variety of geometric parameters used in the numerical model. Increased surface roughness was found to reduce the tangential speed in the vortex near the ground and enlarge the core radius of the vortex. The core radius was a function of the swirl ratio while the peak tangential flow was a function of the magnitude of the total inflow velocity. The CFD simulations showed that it is possible to numerically simulate the surface winds of a tornado and control certain parameters of the laboratory simulator to influence the tornado characteristics of interest to engineers and match those of the field.

벽체형상비의 영향을 합리적으로 고려한 원형수직구 벽체에 작용하는 토압산정방법 (A rational estimating method of the earth pressure on a shaft wall considering the shape ratio)

  • 신영완;사공명
    • 한국터널지하공간학회 논문집
    • /
    • 제9권2호
    • /
    • pp.143-155
    • /
    • 2007
  • 원형수직구 벽체에 작용하는 토압은 축대칭 아칭효과로 인하여 평면변형조건의 벽체에 작용하는 토압보다는 작으며, 원형수직구 흙막이벽이나 라이닝 등의 설계를 위해서는 벽체에 작용하는 토압의 정확한 산정이 필요하다. 따라서, 수평 및 연직방향 아칭효과에 의한 토압감소를 고려하고 수직구 벽체 반경에 대한 높이의 비로 정의되는 벽체형상비의 영향을 합리적으로 고려한 토압산정식이 제안되었다. 또한, 모래지반에서 모형실험에 의한 토압이 분석되었다. 제안된 토압산정식에 의한 토압은 벽체반경이 증가하여 벽체형상비가 감소함에 따라 평면변형조건의 토압과 정확히 일치하였으며, 모형실험에 의한 토압분포와 근사한 경향을 나타내었다.

  • PDF

점진적 롤 성형 공정에서 공정 변수가 박판 금속의 곡률 생성에 미치는 영향 (An Effect of Process Parameters on the Generation of Sheet Metal Curvatures in the Incremental Roll Forming Process)

  • 윤석준;양동열
    • 소성∙가공
    • /
    • 제13권2호
    • /
    • pp.122-128
    • /
    • 2004
  • In order to make a doubly-curved sheet metal effectively, a sheet metal forming process has been developed by adopting the flexibility of the incremental forming process and the principle of bending deformation which causes slight deformation in thickness. The developed process is an unconstrained forming process with no holder. For this study, the experimental equipment is set up with the roll set which consists of two pairs of support rolls and one center roll. In the experiments using aluminum sheets, it is found that the curvature of the formed sheet metal is determined by controlling the distance between supporting rolls in pairs and the forming depth of the center roll and it also depends on the thickness of the sheet metal. In order to check the effect of process parameters on the generation of sheet metal curvatures in this process, the orthogonal array is adopted. From the experimental results, among the process parameters, the distance between supporting rolls in pairs along the direction of one principal radius of curvature as well as the forming depth and the thickness of the material is shown to influence the generation of curvature in the same direction significantly. That is, the other distance between supporting rolls in pairs which are not located in the same direction of one principal radius of curvature, does not have an significant effect on the generation of the curvature in that direction. It mainly affects the generation of curvature in its own direction with the forming depth and the thickness of the material.

점진적 롤 성형 공정의 선박 곡가공 적용을 위한 공정 변수 분석 (Analysis of Process Parameters in the Incremental Roll Forming Process for the Application to Doubly Curved Ship Hull Plate)

  • 심도식;윤석준;이석렬;성대용;한용섭;한명수;양동열
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2005년도 추계학술대회 논문집
    • /
    • pp.322-325
    • /
    • 2005
  • In order to make a doubly-cowed sheet metal effectively, the sheet metal forming process has been developed by adopting the flexibility of the incremental forming process and the principle of bending deformation which causes slight deformation in thickness. The developed process is an unconstrained forming process without holder. The experimental equipment has been set up with the roll set which consists of two pairs of support rolls and one center roll. In order to analyze process parameters in the incremental roll forming process for the application to doubly curved ship hull plate, the orthogonal array is adopted. From the FEM results, among the process parameters, the distance between supporting rolls in pairs along the direction of one principal radius of curvature as well as the forming depth is shown to influence the generation of curvature in the same direction significantly. That is, the other distance between supporting rolls in pairs which are not located in the same direction of one principal radius of curvature, does not have an significant effect on the generation of the curvature in that direction. Also, the forming load and torque from the FEM simulation are acceptable to the system development of the incremental roll forming process for the forming of ship hull plate.

  • PDF

점진적 롤 성형 공정에서 공정 변수가 박판 금속의 곡률 생성에 미치는 영향 (An Effect of Process Parameters on the Generation of Sheet Metal Curvatures in the Incremental Roll Forming Process)

  • 윤석준;양동열
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2003년도 제4회 박판성형 심포지엄
    • /
    • pp.53-57
    • /
    • 2003
  • In order to make a doubly curved sheet metal effectively, a sheet metal farming process has been developed by adopting the flexibility of the incremental forming process and the principle of bending deformation which causes slight deformation to thickness. The developed process is an unconstrained forming process with no holder. For this study, the experimental equipment is set up with the roll set which consists of two pairs of support rolls and one center roll. In the experiments using aluminum sheets, it is found that the curvature of the formed sheet metal is determined by controlling the distance between supporting rolls in pairs and the forming depth of the center roll and it also depends on the thickness of the sheet metal. In order to check the effect of process parameters on the generation of sheet metal curvatures in this process, the orthogonal array is adopted. From the experimental results, among the process parameters, the distance between supporting rolls in pairs along the same direction of one principle radius of curvature as well as the forming depth and the thickness of the material is shown to influence the generation of curvature in the same direction significantly. That is, the other distance between supporting rolls in pairs which are not located in the same direction of one principle radius of curvature, does not have an significant effect on the generation of the curvature in that direction. It just affects the generation of curvature in its own direction mainly with the forming depth and the thickness of the material.

  • PDF

Effect of a Metal-strap Thicknesses on the Bending Process

  • Jung, In-Suk;Kim, Jung-Whan;Lee, Weon-Hee;Chang, Jun-Pok;Bae, Hyun-Mi
    • Journal of the Korean Wood Science and Technology
    • /
    • 제29권3호
    • /
    • pp.14-20
    • /
    • 2001
  • On the bending process, metal-strap plays an important role in dispersing the stress generated in wood. Therefore, the metal-strap has more influence on the property of bentwood materials. The effect of the metal-strap thickness for bentwood was examined. The effect of metal-strap on the bending properties of Korean red pine(Pinus densiflora Sieb. et Zucc.)was investigated in this research. The metal-strap thickness is divided into 4 kinds such as 1.0, 0.8, 0.6, 0.4 mm. The specimens were selected by grain such as annual ring angles, flat grain and half-edge grain specimens. As a result of this study, the bending ability of 1.0, 0.8 mm, thickness of half-edge grain specimens was better than flat grain specimens but the result of 0.6, 0.4 mm were reversed. The bending ability of half-edge grain was better than flat grain and the grade was higher. When the processed specimens were dried, the radius of curvature(ROC) was decreased became drying-stress was not perfectly dispersed. An optimum drying-condition would deminish this phenomenon.

  • PDF