• Title/Summary/Keyword: Radius Variation Analysis

Search Result 126, Processing Time 0.027 seconds

A Study on the Visualization of Electrohydrodynamic Spray Flow in High DC Voltages (고전압 직류전기장에서 전기수력학적 분무 유동 가시화에 관한 연구)

  • Sung, K.A.
    • Journal of ILASS-Korea
    • /
    • v.11 no.3
    • /
    • pp.131-139
    • /
    • 2006
  • An experimental study was performed to investigate the liquid breakup and atomization characteristics in electrohydrodynamic atomization according to the changing of experimental parameters such as nozzle size, fluid flow, and electrical intensity. An original electrohydrodynamic atomizer equipment was designed and manufactured for the analysis of spray visualization and the exploration of relationship between applied power and the behavior of liquid atomization. The image processing technique by using the back-illumination method was applied to visualize the distilled liquid breakup process and to examine the variation of the droplet size distribution. The results show that the spray modes of electrohydrodynamic atomization are closelyconnected by the strength of the electric stresses at the surface of the liquid film and the kinetic energy of the liquid jet leaving the needle tip.

  • PDF

Feasibility Study on Design of Thrust Bearing for Micro Gas Turbine Generator (초소형 가스 터빈 제너레이터용 스러스트 베어링의 설계 및 타당성에 관한 연구)

  • 이용복;곽현덕;김창호;장건희
    • Tribology and Lubricants
    • /
    • v.17 no.6
    • /
    • pp.467-475
    • /
    • 2001
  • Feasibility study of gas-lubricated bearing in micro gas turbine was performed. Based on Reynolds equation, finite difference method with coupled boundary was developed to analyze bearing characteristics, such as load capacity, mass flow rates and stiffness. By the bearing force and mass flow rates analysis with the variation of supply pressure, bearing clearance and capillary radius, acceptable range of design parameters were suggested in terms of load capacity and stiffness of bearings. Additionally, coupled boundary effect on pressure distribution was investigated and it is stated that coupling could reduce an excitation force due to narrow pressure distribution.

Feasibility Study on Design of Thrust Bearing for Micro Gas Turbine/Generator (초소형 가스 터빈/제너레이터용 스러스트 베어링의 설계 및 타당성에 관한 연구)

  • 곽현덕;이용복;김창호;장건희
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 2001.11a
    • /
    • pp.273-281
    • /
    • 2001
  • Feasibility study of gas-lubricated bearing in micro gas turbine was performed. Based on Reynolds equation, finite difference method with coupled boundary was developed to analyze bearing characteristics, such as load-carrying capacity, mass flow rates and stiffness. By the bearing force and mass flow rates analysis with the variation of supply pressure, bearing clearance and capillary radius, acceptable range of design parameters were suggested in terms of load capacity and stiffness of bearings. Additionally, coupled boundary effect on pressure distribution was investigated and it is stated that coupling could reduce all excitation force due to narrow pressure distribution.

  • PDF

Finite Element Analysis of Capctive Silicon Pressure Sensors (용량형 실리콘 압력 센서의 유한요소 해석)

  • Roh, Yong-Ae
    • The Journal of the Acoustical Society of Korea
    • /
    • v.14 no.2E
    • /
    • pp.12-18
    • /
    • 1995
  • Capactive miro pressure sensor is simulated with finite element methods to analyze the effect of geometrical variation on its performace. Sensor material is th silicon single crystal. The sensor consists of a disk type diaphragm and several bridges connected to a rigid frame. Structural variables in consideration are the thickness of the diaphragm and the bridges, radius of the circular plate, and the number of bridges. Results of static, dynamic and sensitivity analyses reveal the best structure of the sensor among the fifteen cases under investigation.

  • PDF

Post-buckling analysis of geometrically imperfect tapered curved micro-panels made of graphene oxide powder reinforced composite

  • Mirjavadi, Seyed Sajad;Forsat, Masoud;Barati, Mohammad Reza;Hamouda, AMS
    • Steel and Composite Structures
    • /
    • v.36 no.1
    • /
    • pp.63-74
    • /
    • 2020
  • The present research investigates post-buckling behavior of geometrically imperfect tapered curved micro-panels made of graphene oxide powder (GOP) reinforced composite. Micro-scale effects on the panel structure have been included based on strain gradient elasticity. Micro-panel is considered to be tapered based on thickness variation along longitudinal direction. Weight fractions of uniformly and linearly distributed GOPs are included in material properties based on Halpin-Tsai homogenization scheme considering. Post-buckling curves have been determined based on both perfect and imperfect micro-panel assumptions. It is found that post-buckling curves are varying with the changes of GOPs weight fraction, geometric imperfection, GOP distribution type, variable thickness parameters, panel curvature radius and strain gradient.

Numerical study on the walking load based on inverted-pendulum model

  • Cao, Liang;Liu, Jiepeng;Zhang, Xiaolin;Chen, Y. Frank
    • Structural Engineering and Mechanics
    • /
    • v.71 no.3
    • /
    • pp.245-255
    • /
    • 2019
  • In this paper, an inverted-pendulum model consisting of a point supported by spring limbs with roller feet is adopted to simulate human walking load. To establish the kinematic motion of first and second single and double support phases, the Lagrangian variation method was used. Given a set of model parameters, desired walking speed and initial states, the Newmark-${\beta}$ method was used to solve the above kinematic motion for studying the effects of roller radius, stiffness, impact angle, walking speed, and step length on the ground reaction force, energy transfer, and height of center of mass transfer. The numerical simulation results show that the inverted-pendulum model for walking is conservative as there is no change in total energy and the duration time of double support phase is 50-70% of total time. Based on the numerical analysis, a dynamic load factor ${\alpha}_{wi}$ is proposed for the traditional walking load model.

Crack Opening Area Assessment of Circumferential Though Wall Crack in a Pipe Subjected to Tension and Bending (인장과 굽힘을 받는 배관의 원주방향 관통균열 개구면적 평가)

  • Kim, Sang-Cheol;Kim, Maan-Won
    • Journal of the Korean Society of Safety
    • /
    • v.23 no.5
    • /
    • pp.61-66
    • /
    • 2008
  • It is important to calculate the exact crack opening area in the cracked pipe subjected to axial force and bending moment. Among many solutions for obtaining the crack opening displacement, Paris-Tada's expression, which is derived from energy method, is open used in fracture analysis for piping crack problems because of its simplicity. But Paris-Tada's equation has conservativeness when radius over thickness ratio(R/t) is ten or less, for it is based on the stress intensity factor solution having a compliance function derived from a simple shell theory. In this paper we derived a new expression using a different stress intensity factor solution which is able to consider the variation of compliance through wall thickness in a cracked pipe. Conservativeness of both equations was examined and compared to finite element analysis results. Conservativeness of the new equation is decreased when R/t > 10 and increased slightly when R/t < 10 compared with Paris-Tada's. But Both equations were highly conservative when R/t < 10 compared with finite element analysis results.

Static stability and vibration response of rotating carbon-nanotube-reinforced composite beams in thermal environment

  • Ozge Ozdemir;Huseyin Ural;Alexandre de Macedo Wahrhaftig
    • Advances in nano research
    • /
    • v.16 no.5
    • /
    • pp.445-458
    • /
    • 2024
  • The objective of this paper is to present free vibration and static stability analyses of rotating composite beams reinforced with carbon nanotubes (CNTs) under uniform thermal loads. Beam structural equations and CNT-reinforced composite (CNTRC) beam formulations are derived based on Timoshenko beam theory (TBT). The temperature-dependent properties of the beam material, such as the elastic modulus, shear modulus, and material density, are assumed to vary over the thickness according to the rule of mixture. The beam material is modeled as a mixture of single-walled carbon nanotubes (SWCNTs) in an isotropic matrix. The SWCNTs are aligned and distributed in the isotropic matrix with different patterns of reinforcement, namely the UD (uniform), FG-O, FG-V, FG- Λ and FG-X distributions, where FG-V and FG- Λ are asymmetric patterns. Numerical examples are presented to illustrate the effects of several essential parameters, including the rotational speed, hub radius, effective material properties, slenderness ratio, boundary conditions, thermal force, and moments due to temperature variation. To the best of the authors' knowledge, this study represents the first attempt at the finite element modeling of rotating CNTRC Timoshenko beams under a thermal environment. The results are presented in tables and figures for both symmetric and asymmetric distribution patterns, and can be used as benchmarks for further validation.

Determination of radius of edge round cut of loading head for deformation strength test (변형강도 시험용 하중봉의 원형절삭반경 선정연구)

  • Park, Tae-W.;Doh, Young-S.;Kim, Kwang-W.
    • International Journal of Highway Engineering
    • /
    • v.10 no.2
    • /
    • pp.183-191
    • /
    • 2008
  • This study evaluated influence of the loading head dimension on characteristics of deformation strength ($S_D$) of asphalt mixtures. Kim test and Wheel tracking (WT) test were conducted to evaluate $S_D$ characteristics with relation to WT results for various mixtures. The $S_D$ values and coefficient of variation of $S_D$ values of r=10mm were smaller than those of r=10.5mm. It was also found that $S_D$ values obtained using r=10mm loading head showed high correlations with rut parameters of WT test. It was indicated that the aggregate size and radius (r) of round cut were statistically significant variables on $S_D$ at = 0.05 level in the analysis of variance. However, in interaction of r and aggregate size showed no significance within $10{\sim}19mm$ aggregate size at the same level. Therefore, it was concluded that the diameter (D) of 40mm and the bottom edge radius (r) of 10mm was suitable dimension of loading head for deformation strength test.

  • PDF

Study on Temperature Load of Curved Steel Box Girder Bridges (곡선강박스거더교의 온도하중에 관한 연구)

  • Kim Sang-Hyo;Cho Kwang-Il;Hong Ju-Hyung
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2005.04a
    • /
    • pp.20-27
    • /
    • 2005
  • Solar radiation causes non-uniform temperature distribution in the structure, depending on the shape of the structure and its shadows. Especially in cases of curved steel box girder bridges, non-uniform temperature distribution due to solar radiation can reduce bridge life and serviceability when combined with another load combination. In this study, the method for predicting the temperature distribution of curved bridges developed by Kim et al., was used to predict the non-uniform temperature distribution which served as a basis for structural analysis of 3-D bridge behavior. In order to seek the most unfavorable conditions of solar radiation, observation data from the Korea Meteorological Administration for solar radiation were analyzed. The region of the most high solar radiation condition was selected and its one year variation of the solar radiation data was considered. From this analysis, the most unfavorable solar radiation condition with lower solar altitude and intense solar radiation was selected. Based on the selected solar radiation condition, structural behavior of curved bridges with diverse bridge direction, span length, radius and support conditions are analyzed.

  • PDF