• Title/Summary/Keyword: Radius Variation Analysis

Search Result 126, Processing Time 0.025 seconds

Errors in One-Dimensional Heat Transfer Analysis in a Hollow Cylinder Feedwater Pipe (속이 빈 원관에서 1차원적인 열전달 해석의 오차)

  • Gang, Hyeong-Seok
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.20 no.2
    • /
    • pp.689-696
    • /
    • 1996
  • A comparison is made of the heat loss from a hollow cylinder, computed using an one-dimensional analytic method and a two-dimensional separation of variables scheme. For a two-dimensional analysis, the temperature of the inner surface as a boundary condition can be varied along the length of the cylinder by varing the temperature variation factor, b. Comparisons of the heat loss from the hollow cylinder using these two methods are given as a function of non-dimensional cylinder length, the ratio of the outer radius to the inner radius, temperature variation factor and Biot number. The result shows that the value of the heat loss from the hollow cylinder obtained using the one-dimensional analytic method becomes close to the value given by the two-dimensional separation of variables scheme as the value of Biot number and the non-dimensional hollow cylinder length increase and as the ratio of the outer radius to the inner radius decreases.

Cell Counting Algorithm Using Radius Variation, Watershed and Distance Transform

  • Kim, Taehoon;Kim, Donggeun;Lee, Sangjoon
    • Journal of Information Processing Systems
    • /
    • v.16 no.1
    • /
    • pp.113-119
    • /
    • 2020
  • This study proposed the structure of the cluster's cell counting algorithm for cell analysis. The image required for cell count is taken under a microscope. At present, the cell counting algorithm is reported to have a problem of low accuracy of results due to uneven shape and size clusters. To solve these problems, the proposed algorithm has a feature of calculating the number of cells in a cluster by applying a radius change analysis to the existing distance conversion and watershed algorithm. Later, cell counting algorithms are expected to yield reliable results if applied to the required field.

EFFECTS OF ROUNDING CORNERS ON THE FLOW PAST A SQUARE CYLINDER (정방형 실린더의 모서리 원형화에 따른 유동 불안정성의 변화)

  • Park, Doohyun;Yang, Kyung-Soo;Lee, Kyongjun;Kang, Changwoo
    • Journal of computational fluids engineering
    • /
    • v.19 no.1
    • /
    • pp.57-63
    • /
    • 2014
  • This study performed numerical analysis for the characteristics of flow-induced forces and the flow instability depending on the cross-sectional shape of the cylinder in laminar flow. To implement the cylinder cross-section, we adopted an Immersed Boundary Method with marker particles. We analyzed flow characteristics based on the radius of corner curvature. Main parameters are corner radius and Reynolds number (Re). With Re = 40, 50, 150 we calculated the flow field, drag coefficient, RMS of lift coefficient, pressure coefficient and Strouhal number in conjunction with the corner radius variation. Also, we calculated critical Reynolds number ($Re_c$) depending on the corner radius variation.

CFD Analysis of Trap Effect of Groove in Lubricating Systems: Part II - Variation in Radius of Curvature of Groove Edge (그루브의 Trap 효과에 대한 CFD 해석: 제2부 - 그루브 모서리의 곡률반경 변화)

  • Hong, Sung-Ho
    • Tribology and Lubricants
    • /
    • v.36 no.6
    • /
    • pp.359-364
    • /
    • 2020
  • Numerical investigation of the groove trap effect with variation in the groove-edge radius of curvature is presented here. The trap effect is evaluated in a two-dimensional sliding bearing using computational fluid dynamics (CFD). This simulation is based on the discrete phase model (DPM) and standard k - ε turbulence model using commercial CFD software, FLUENT. The numerical results are evaluated by comparisons with streamlines and particle trajectories in the grooves. Grooves are applied to various lubrication systems to improve their lubrication characteristics, such as load carrying capacity increment, leakage reduction, frictional loss reduction, and preventing three-body abrasive wear due to trapping effect. This study investigates the grove trapping effect for various groove-edge radius of curvature values and Reynolds numbers. The particle is assumed to be made of steel, with a circular shape, and is injected as a single particle in various positions. One-way coupling is used in the DPM model because the single particle injection condition is applied. Further, the "reflect" condition is applied to the wall boundary and "escape" condition is used for the "pressure inlet" and "pressure outlet" boundaries. From the numerical results, the groove edge radius is found to influence the groove trap effect. Moreover, the groove trap effect is more effective when applying the groove edge radius.

Optimal Design of Disk clamp to Reduce RRO in a Hard Disk Drive (진동저감을 위한 HDD용 Disk Clamp의 최적설계)

  • 이행수;고정석;황태연;정우철
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2002.05a
    • /
    • pp.539-542
    • /
    • 2002
  • The role of disk clamp is to fasten disks to motor and to prevent the slip of disks during operation. This paper examined the effects of the design parameters of disk clamp - thickness, contact radius and cross-sectional shape -on the clamping force and circumferential stress distribution of disk. The large stress variation in circumferential direction results in large disk waveness and will increase repeatable run-out (RRO) finally. The disk clamp-disk-disk spacer system is modeled and the FE analysis is performed by ANSYS. The disk clamp with large contact radius shows more uniform stress distribution than the one with small contact radius and the stiffness variation around circumferential direct ion or the addition of the bending sect ion can make stress distribution uniform.

  • PDF

Wafer TTV Measurement and Variable Effect Analysis According to Settling Time (Settling Time에 따른 웨이퍼 TTV 측정 및 변수 영향 분석)

  • Hyeong Won Kim;Anmok Jeong;Taeho Kim;Hak Jun Lee
    • Journal of the Semiconductor & Display Technology
    • /
    • v.22 no.3
    • /
    • pp.8-13
    • /
    • 2023
  • High bandwidth memory a core technology of the future memory semiconductor industry, is attracting attention. Temporary bonding and debonding process technology, which plays an important role in high bandwidth memory process technology, is also being studied. In this process, total thickness variation is a major factor determining wafer performance. In this study, the reliability of the equipment measuring total thickness variation is identified, and the servo motor settling, and wafer total thickness variation measurement accuracy are analyzed. As for the experimental variables, vacuum, acceleration time, and speed are changed to find the most efficient value by comparing the stabilization time. The smaller the vacuum and the larger the radius, the longer the settling time. If the radius is small, high-speed rotation performance is good, and if the radius is large, low-speed rotation performance is good. In the future, we plan to conduct an experiment to measure the entire of the wafer.

  • PDF

Effect of Punch Shapes on Failure Instability of Expansion Tube (펀치형상이 팽창튜브의 파단불안전성에 미치는 영향)

  • Choi, Won-Mok;Kwon, Tae-Su;Jung, Hyun-Sung;Kim, Jing-Sung
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.19 no.2
    • /
    • pp.125-132
    • /
    • 2011
  • The rupture of an expansion tube is mainly affected by the expansion ratio and the external shape of the punch used to expand the tube. In order to prevent the tube from rupture, the effect of the external shape of the punch should be considered in the design. The aim of this paper is to confirm the effect of key design parameters of the punch on rupture of the tube using a finite element analysis with a ductile damage model. The results of the analysis indicated that the expansion ratio of the tube was mainly affected by variation of the radius of the punch. However, the rupture was more affected by variation of the punch angle than the radius of the punch. The existence of a specific punch angle at which rupture did not occur, even if the radius of the punch was increased, was found from the results.

Analysis of a Pin Fin with Variable Fin Base Thickness (핀 바닥두께가 변하는 pin 핀의 해석)

  • Kang, Hyung-Suk
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2008.05a
    • /
    • pp.642-645
    • /
    • 2008
  • A pin fin with variable fin base thickness is analysed by using the one dimensional analytic method. Heat loss and fin thermal resistance are presented as a function of the fin base thickness, pin fin outer radius and convection characteristic numbers ratio. The relationship between the fin outer radius and fin base thickness for the same amount of heat loss is shown. One of the results indicates the fin thermal resistance decreases as the fin outer radius and/or convection characteristic numbers ratio increase whereas the fin thermal resistance is independent on the variation of fin base thickness.

  • PDF

NOVEL GEOMETRIC PARAMETERIZATION SCHEME FOR THE CERTIFIED REDUCED BASIS ANALYSIS OF A SQUARE UNIT CELL

  • LE, SON HAI;KANG, SHINSEONG;PHAM, TRIET MINH;LEE, KYUNGHOON
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • v.25 no.4
    • /
    • pp.196-220
    • /
    • 2021
  • This study formulates a new geometric parameterization scheme to effectively address numerical analysis subject to the variation of the fiber radius of a square unit cell. In particular, the proposed mesh-morphing approach may lead to a parameterized weak form whose bilinear and linear forms are affine in the geometric parameter of interest, i.e. the fiber radius. As a result, we may certify the reduced basis analysis of a square unit cell model for any parameters in a predetermined parameter domain with a rigorous a posteriori error bound. To demonstrate the utility of the proposed geometric parameterization, we consider a two-dimensional, steady-state heat conduction analysis dependent on two parameters: a fiber radius and a thermal conductivity. For rapid yet rigorous a posteriori error evaluation, we estimate a lower bound of a coercivity constant via the min-θ method as well as the successive constraint method. Compared to the corresponding finite element analysis, the constructed reduced basis analysis may yield nearly the same solution at a computational speed about 29 times faster on average. In conclusion, the proposed geometric parameterization scheme is conducive for accurate yet efficient reduced basis analysis.

A study on the link composition design of a double link type level luffing jib crane (II) (이중 링크 형식 수평 인입 집 크레인의 링크 구성 설계에 관한 연구(II))

  • Hur, C.W.;Choi, M.S.;Moon, D.H.
    • Journal of Power System Engineering
    • /
    • v.15 no.1
    • /
    • pp.57-63
    • /
    • 2011
  • It is very important to determine link composition of a crane in the basic design of the crane. There are many parameters in the design for the link composition of a double link type level luffing jib crane. We analyze the variation of link composition according to the variation of these parameters which are the angle of fixed link, the angle between the fixed link and backstay when the position of the crane is the maximum working radius, the ratio of fly jib length between two moving hinges to the total length of fly jib, the length of backstay, and the slewing radius. In this paper, we describe the application of the previous analysis program of the link composition design for a double link type level luffing jib crane.