• Title/Summary/Keyword: Radish yield

Search Result 93, Processing Time 0.027 seconds

Basic Studies on the Consumptive Use of Water Required for Dry Field Crops (3) -Red Pepper and Radish- (밭작물 소비수량에 관한 기초적 연구(III)-고추 및 가을 무우-)

  • 김철기;김진한;정하우;최홍규;권영현
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.32 no.1
    • /
    • pp.55-71
    • /
    • 1990
  • The purpose of this study is to find out the basic data for irrigation plans of red pepper and radish during the growing period, such as total amount of evapotranspiration, coefficent of evapotranspiration at each growth stage, the peak stage of evapotranspiration, the maximum ten day evapotranspiration , optimum irrigation point, total readily available moisture and intervals of irrigation date. The plots of experiment were arranged with split plot design which were composed of two factors, irrigation point for main plot and soil texture for split plot, and three levels ; irrigation point with pH1.7-2.0, pF2.1-2.4 and pF2.5-2.8, at soil texture of sandy soil, sandy loam and silty clay for both red pepper and radish, with two replications. The results obtained are summarized as follows. 1.1/10 exceedance probability values of maximum total pan evaporation during growing period for red peppr and radish were shown as 663.6 mm and 251.8 mm. respectively, and those of maximum ten day pan evaporation for red pepper and radish, 67.1 mm and 46.9 mm, respectively. 2.The time that annual maximum of ten day pan evaporation can he occurred, exists at any stage between the middle of May and the late of August for red pepper, and at any stage between the late of August and the late September for radish. 3.The magnitude of evapotranspiration and its coefficient for red pepper was occurred large in order of pF1.7-2.0 pF2.1-2.4 and pF2.5~2.8 in aspect of irrigation point and the difference in the magnitude of evapotranspiration and of its coefficient between levels of irrigation point was difficult to be found out due to the relative increase in water consumption resulted from large flourishing growth at the irrigation point in lower water content for radish. In aspect of soil texture they were appeared large in order of sandy loam, silty clay and sandy soil for both red pepper and radish. 4.The magnitude of leaf area index was shown large in order of pF2.1-2.4, pF2.5-2.8, and pFl.7-2.0, for red pepper and of pF2.5-2.8, pF2.1-2.4, pFl.7-2.0 for radish in aspect of irrigation point, and large in order of sandy loam, silty clay, sandy soil for both red pepper and radish in aspect of soil texture 5.1/10 exceedance probability value of evapotranspiration and its coefficient during the growing period for red pepper were shown as 683.5 mm and 1.03, respectively, while those of radish, 250.3 mm and 0, 99. respectively. 6.The time that the maximum evapotranspiration of red pepper can be occurred is in the middle of August around the date of ninetieth to hundredth after transplanting, and the time for radish is presumed to be in the late of September, around the date of thirtieth to fourtieth after sowing. At that time, 1/10 exceedance probability value of ten day evapotranspiration and its coefficient for red pepper is assumed to be 81.8 mm and 1.22, respectively, while those of radish, 49, 7 mm and 1, 06, respectively. 7.Optimum irrigation point for red pepper on the basis of the yield of raw matter is assumed to be pFl.7-2.0 for sandy soil, pF2.5-2.8 for sandy loam, and pF2.1-2.4 for silty clay. while that for radish is appeared to be pF2.5-2.8 in any soil texture used. 8.The soil moisture extraction patterns of red pepper and radish have shown that maximum extraction rates exist at 7 cm deep layer at the beginning stage of growth in any soil texture and that extraction rates of 21 cm to 35 cm deep layer are increased as getting closer to the late stage of growth. And especially the extraction rates have shown tendency to be greatest at 21cm deep layer from the most flourishing stage of growth for red pepper and at the last stage of growth for radish. 9.The total readily available moisture on the basic of the optimum irrigation point become 3.77-8.66 mm for sandy soil, 28.39-34.67 mm for sandy loam and 18.40-25.70 mm for silty clay for red pepper of each soil texture used but that of radish that has shown the optimum irrigation point of pF2.5-2.8 in any soil texture used. 12.49-15.27 mm for sandy soil, 23.03-28.13 mm for sandy loam, and 22.56~27.57 mm for silty clay. 10.On the basis of each optimum irrigation point. the intervals of irrigation date at the growth stage of maximum consumptive use of red pepper become l.4 days for sandy soil, 3.8 days for sandy loam and 2.6 days for silty clay, while those of radish, about 7.2 days.

  • PDF

Effects of Worm Casting(100%) Organic Fertilizer Rate on Growth Characters and Yield of Ieol´ Radish in Jeju Island (제주지역에서 지렁이분(100%) 유기질비료 시비량 차이에 따른 열무의 생육반응 및 수량변화)

  • 조남기;강영길;송창길;조영일;고동환;고미라
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.23 no.2
    • /
    • pp.77-80
    • /
    • 2003
  • This study was conducted to determine the optimum organic fertilizer rate (0, 100, 200, 300, 400, 500, 600kg/10a) of worm casting on growth response and yield of Ieol´ radish in Jeiu island. The results obtained were summarized as follows; plant height was getting bigger as organic fertilizer increased from 0 to 500kg/10a and then became smaller at 600kg/10a. But was no significance from 200 to 600kg/10a. Number of leaves, leaf width and root diameter were the same trend with plant height response. Root length was not significantly affected by organic fertilizers. SPAD reading value of leaves increased as increasing of organic fertilizers. Fresh matter yield (top+root) increased significantly 2,949∼4,561kg/10a as fertilizer rate increased from 0 to 200kg/10a, increased 5.096∼5,707kg/10a from 300 to 500kg/10a of fertilizer rate and decreased to 4,873kg/10a at 600kg/10a. Top and root weight were the same trend with fresh matter yield.

Effects of Saline Irrigation Water on Crop Growth in Strawberry and Red Radish (딸기 및 적환무의 관개용수 염도수준에 따른 생육영향 분석)

  • Kim, Soo-Jin;Bae, Seung-jong;Kim, Hakkwan;Jeong, Hanseok
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.62 no.3
    • /
    • pp.85-94
    • /
    • 2020
  • Since the salinity of irrigation water is a critical constraint to the production of certain vegetable crops, salinity was considered as one of the most important factors of irrigation water. The purpose of this study were to monitor and assess the effects of saline irrigation water on strawberry and red radish growth in protected cultivation. One control and three treatments, which were differentiated according to the level of salinity in irrigated water, were employed for each vegetable to assess the effects of the irrigation with saline water. Monitoring has shown that using irrigation water with salinity above a certain level causes excessive accumulation of sodium (Na+) in both strawberry and red radish. Increased Na+ content was analyzed to be able to decrease the sugar content in strawberry. In addition, the salinity higher than the threshold level of irrigation water was found to reduce the growth and yield of strawberry and red radish. This study could contribute to suggest criteria for safe use of saline water in protected cultivation, although long-term monitoring is needed to get more representative results.

Optimum Double-Row Spacing in the Autumn Cultivation of Radish (Raphanus sativus L.) (가을 무(Raphanus sativus L.)두 줄 재배를 위한 적정 재식거리)

  • Kang, Eun Seon;Ha, Sun Mi;Cheong, Seoung Ryong;Seo, Myeong Whoon;Park, Su hyoung;Kwack, Yong-Bum;Choi, Keun Jin;Chae, Won Byoung
    • Korean Journal of Environmental Agriculture
    • /
    • v.34 no.3
    • /
    • pp.204-209
    • /
    • 2015
  • BACKGROUND: Radish (Raphanus sativus L.) is cultivated worldwide and one of important vegetables in Korea where year-round production of radish is possible. Most of radishes in autumn are cultivated with double-row spacing except for Gangwon-do where sing-row spacing is predominant. However, no research has been conducted on double-row spacing in radish cultivation so far. This study was conducted to reveal the optimum double-row spacing in autumn cultivation of radish. METHODS AND RESULTS: Using top two popular autumn radish cultivars 'S' and 'C', seeds were sown in spacing between rows of $55{\times}25$, $45{\times}25$, $35{\times}25$ and $25{\times}25cm$, and that within rows of $35{\times}28$, $35{\times}25$, $35{\times}22$ and $35{\times}19cm$. Plants were harvested 58 days after sowing and leaf weight, length and number, and root weight, length sugar content and pithiness were investigated. In the spacing between rows, no significant difference was observed in leaf weight, length and number in both cultivars; however, 25 cm of spacing between rows significantly reduced the root length and weight in 'S' and 'C' cultivars, respectively. In spacing within rows, 28, 25 and 22 cm did not affect fresh root weight in both cultivars, producing appropriate radish roots of 1,500g on average. However, 19 cm of spacing within rows did not reduced fresh root weight in 'S' cultivar but did significantly in 'C' cultivar (1148.3 g). Sugar contents and pithiness of roots were also affected by spacing but its effect was very small and different between cultivars. CONCLUSION: It is suggested that optimum double-row spacing in autumn radish cultivation is 35 cm and 22 cm of spacing between and within rows, respectively, the spacing that did not reduce the yield and quality of radish roots in two popular autumn radish cultivars.

Distribution of Chromium in Radish and Soil by Successive Leather Processing Sludge Treatment (피혁폐기물 연용에 따른 토양 및 식물체내 크롬분포)

  • Kwon, Soon-Ik;Jung, Kwang-Yong;Jung, Goo-Bok;Park, Baeg-Gyoon
    • Korean Journal of Environmental Agriculture
    • /
    • v.19 no.1
    • /
    • pp.20-25
    • /
    • 2000
  • Leather processing sludge were amended in sandy loam soil successively to investigate effects on soil properties and radish crop. Total nitrogen concentration of the sludge was $60\;g\;kg^{-1}$, and chromium was $9,048\;mg\;kg^{-1}$. Sludges were treated twice each year for 4 year, and the soils were mixed with sludge to give mixtures equivalent to sludge application rates of 12.5, 25 and $50\;Mg\;ha^{-1}\;yr^{-1}$ in dry matter. Chemical fertilizers $(N-P-K\;:\;280-59-154\;kg\;ha^{-1})$ used as a control. All treated soils were croped to altari and kimjang radish in spring and fall respectively. Organic matter and Cr content in soils were increased with input rate and years of successive application of leather processing sludge, while phosphorous and potassium contents were decreased. Yields of the first harvested altari grown in sludge treated pots were less than control. In the other hand, yields of the first kimjang radish were more than control in proportion with sludge input rates until third year fall. But in fourth year, all sludge treated pot was much less than control in radish yield. Chromium contents of radish in treated soil increased and Cr contents in leaves of radish were higher than roots. Leather processing sludge was considered a potential hazardous resource to soil and crops when it use continuously, because it has high Cr concentration.

  • PDF

Effect of Waste Sludge of Fermentation By-Product on the Growth of Young Radish and Chemical Properties of Soil (발효부산물 오니의 시용이 열무 생장과 토양화학성에 미치는 영향)

  • Hong, Soon-Dal;Seok, Yeong-Seon;Sa, Tong-Min
    • Korean Journal of Environmental Agriculture
    • /
    • v.20 no.1
    • /
    • pp.8-14
    • /
    • 2001
  • To investigate the effects of waste sludge from antibiotic fermentation on the growth of young radish and chemical properties of soil, five levels of fertilizer, control (recommended fertilizer, $N-P_2O_5-K_2O=160-59-104$ kg/ha), AS(control + sludge 1,000 kg/ha), AC(control + conventional compost 1,000 kg/ha), SNS(control - subtracting 30% N of sludge + sludge 1,000 kg/ha) and SNC(control - subtracting 30% N of conventional compost + conventional compost 1,000 kg/ha) were applied and radish was grown twice with same treatments on May and August in 1998. Germination rate and early growth of young radish grown with AS and SNS were lower than those grown in control and with AC, SNC. This negative effects by adding the sludge in the early growth seemed to be caused by damage of ammonia gas released during degradation of the sludge in soil. However, yield of young radish showed no significant difference among all the treatments including the AS and SNS at the 1st and 2nd experiment, and these suggested that the latter half of growth of young radish was accelerated by adding the sludge. Contents of T-N in young radish and inorganic N in soil showed a tendency to increase by adding the sludge while antibiotic substance, cephalosporin-C, was not detected in plant material and soils after harvest of young radish in both experiments. Consequently, waste sludge from antibiotic fermentation, which contains high levels of organic matter and nitrogen could be used as an useful resource in agriculture.

  • PDF

Three Alternative Crops to Reduce Soil Erosion for Mountain Agriculture

  • Kim, Se-Won;Seo, Young-Ho;Kim, Jong-Hwan;Kang, An-Seok;Jeong, Byeong-Chan;Jung, Yeong-Sang
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.44 no.4
    • /
    • pp.534-538
    • /
    • 2011
  • One of the problems for cultivating crops in the mountainous highland is soil erosion and nutrients runoff. Alternative cropping ways were searched to reduce soil erosion and to ensure farm income in the mountainous highland agricultural region. Three edible wild plants including goatsbeard, Korean thistle, and aster, were selected to test as alternative crops to reduce soil erosion in mountain agriculture of highland area. In the first year, the soil losses from the alternative cropping were 26 to 63 percents of the soil loss from summer radish cultivated by conservation tillage with contour and plastic film mulching. The relative soil losses in the second year ranged from 2.8 to 5.5 percents in comparison with radish cultivation. Rapid surface coverage contributed to successive soil loss protection by these alternative crops. Farm net profit of these crops was greater than that of radish. Monitoring of yields of Korean thistle or aster for further experiments, however, might be necessary for economic cultivation due to yield reduction caused by consecutive production.

Evaluation of Different Organic Materials in Reducing Cadmium Phytoavailability of Radish Grown in Contaminated Soil

  • Kim, Yong Gyun;Park, Hyean Cheal;Kim, Keun Ki;Kim, Sung Un;Hong, Chang Oh
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.50 no.1
    • /
    • pp.12-20
    • /
    • 2017
  • Various types of organic materials could affect differently immobilization of cadmium (Cd) and its uptake by plant grown in soil. Therefore, this study was conducted to evaluate effect of different organic materials in reducing Cd phytoextractability in contaminated arable soil. To do this, rice straw and composted manure were selected as organic materials and applied at the rate of 0, 15, 30, and $45Mg\;ha^{-1}$ in Cd contaminated arable soil with $6.5mg\;kg^{-1}$ of total Cd. Radish (Raphanus sativa L.) was seeded and grown for 50 days to evaluate Cd phytoavailability with different organic materials. Composted manure was more effective to decrease $1M\;NH_4OAc$ extractable Cd concentration and increase pH of soil than rice straw. $One\;M\;NH_4OAc$ extractable Cd concentration significantly decreased with increasing application rate of composted manure. Tendency of Cd uptake by radish plant with application of different organic materials was similar to that of $1M\;NH_4OAc$ extractable Cd concentration and soil pH. Changes of soil pH with application of straw and composted might be one of factors to determine extractability and phytoavailability of Cd in this study. Radish yield significantly increased with up to $45Mg\;ha^{-1}$ of composted manure application but did not with straw application. In the view point of Cd phytoextractability and plant productivity, it is recommended to apply composted manure rather than straw in Cd contaminated arable soil.

Effects of Nitrite and Phosphate Replacements for Clean-Label Ground Pork Products

  • Jiye Yoon;Su Min Bae;Jong Youn Jeong
    • Food Science of Animal Resources
    • /
    • v.43 no.2
    • /
    • pp.232-244
    • /
    • 2023
  • We investigated the effects of different phosphate replacements on the quality of ground pork products cured with sodium nitrite or radish powder to determine their potential for achieving clean-label pork products. The experimental design was a 2×5 factorial design. For this purpose, the ground meat mixture was assigned into two groups, depending on nitrite source. Each group was mixed with 0.01% sodium nitrite or 0.4% radish powder together with 0.04% starter culture, and then processed depending on phosphate replacement [with or without 0.5% sodium tripolyphosphate; STPP (+), STPP (-), 0.5% oyster shell calcium (OSC), 0.5% citrus fiber (CF), or 0.5% dried plum powder (DPP)]. All samples were cooked, cooled, and stored until analysis within two days. The nitrite source had no effect on all dependent variables of ground pork products. However, in phosphate replacement treatments, the STPP (+) and OSC treatments had a higher cooking yield than the STPP (-), CF, or DPP treatments. OSC treatment was more effective for lowering total fluid separation compared to STPP (-), CF, or DPP treatments, but had a higher percentage than STPP (+). The STPP (+) treatment did not differ from the OSC or CF treatments for CIE L* and CIE a*. Moreover, no differences were observed in nitrosyl hemochrome content, lipid oxidation, hardness, gumminess, and chewiness between the OSC and STPP (+) treatments. In conclusion, among the phosphate replacements, OSC addition was the most suitable to provide clean-label pork products cured with radish powder as a synthetic nitrite replacer.

Effect of Banded Subsoil Fertilization on the Yields and N Utilization of Radish (Raphanus sativus L.) in Plastic Film Mulching Cultivation (무 재배시 질소이용률 및 수량에 미치는 토중시비 효과)

  • Yang, Chang-Hyu;Yoo, Chul-Hyun;Shin, Bok-Woo;Kang, Seung-Won
    • Korean Journal of Environmental Agriculture
    • /
    • v.24 no.4
    • /
    • pp.398-403
    • /
    • 2005
  • To establish law-put fertilization technique and increase of fertilization efficiency during cultivation of plastic film mulching for plastic the improvement of soil properties, nutrition efficiency and yield by banded subsoil fertilization (BSF) using band spoty applicator was conducted at radish (Raphanus sativus L.) field in Honan Agricultural Research Institute from 1997 to 1998 for 2 years. These results were as follows. T-N, available $P_2O_5$ exchangeable Ca and K contents of soil were increased those of before experiment especially in BSF treatment. Also, the content of soil $NO_3-N$ was higher in BSF as fertilization amount is increasing than in CF (conventional fertilization). Uptake amounts of nitrogen fertilized were high in BSF during overall the growth period of plant and N utilization was high by $21.9{\sim}30.4%$ in BSF compared to in CF. The rate of fertilizer loss by rainfall was largely reduced, because all fertilizer applied was putted around the root zone. The total yields of fresh radish BSF treatments were more increased $13{\sim}37%$ than that of CF treatment.