• Title/Summary/Keyword: Radionuclides

Search Result 603, Processing Time 0.03 seconds

Hydrogeochemical Characteristics, Occurrence, and Distribution of Natural Radioactive Materials (Uranium and Radon) in Groundwater of Gyeongnam and Gyeongbuk Provinces (경상남북도 지하수 중 자연방사성물질 우라늄과 라돈의 산출특징과 함량분포에 대한 수리지화학적 연구)

  • Cho, Byong Wook;Choo, Chang Oh;Yun, Uk;Lee, Byeong Dae;Hwang, Jae Hong;Kim, Moon Su
    • The Journal of Engineering Geology
    • /
    • v.24 no.4
    • /
    • pp.551-574
    • /
    • 2014
  • The occurrence, distribution, and hydrogeochemical characteristics of uranium and radon in groundwater within different lithologies in Gyeongnam and Gyeongbuk provinces were investigated. A total of 201 groundwater samples from sedimentary rocks taking a large portion of the geology and from igneous rocks taking a small portion of the geology were analyzed and examined using factor analysis. Their radionuclide levels were used to construct detailed concentration maps. The groundwater types, defined using a Piper diagram, are mainly Ca-$HCO_3$ with less Na-$HCO_3$. Among the samples, one site exceeds $30{\mu}g/L$ of uranium (i.e., the maximum contaminant level of the USEPA) and three sites exceed 4,000 pCi/L of radon (i.e., the alternative maximum contaminant level). No samples were found to exceed the 15 pCi/L level of gross alpha or the 5 pCi/L level of radium. The concentration of uranium ranges from 0.02 to $53.7{\mu}g/L$, with a mean of $1.56{\mu}g/L$, a median of $0.47{\mu}g/L$, and a standard deviation of $4.3{\mu}g/L$. The mean concentrations of uranium for the different geological units increase in the following order: Shindong Group, Granites, Hayang Group, Yucheon Group, and Tertiary sedimentary rocks. The concentration of radon ranges from 2 to 8,740 pCi/L, with an mean of 754 pCi/L, a median of 510 pCi/L, and a standard deviation of 907 pCi/L. The mean radon concentrations for the investigated geological units increase in the following order: Granites, Yucheon Group, Tertiary sedimentary rocks, Hayang Group and Shindong Group. According to the factor analysis for each geological unit, uranium and radon behave independently of each other with no specific correlation. However, radionuclides show close relationships with some components. Regional investigations of radionuclides throughout the country require an integrated approach that considers the main lithological units as well as administrative districts.

Study on the Effectiveness of some Decontamination Agents against Skin Contamination of $^{137}Cs$ and $^{60}Co$ (제염제의 $^{137}Cs$$^{60}Co$에 의한 피부오염의 제염효과에 관한 연구)

  • Chon, Je-Keun;Ji, Pyung-Kook;Kwak, Sang-Soo;Kim, Byung-Tae;Park, Chong-Mook
    • Journal of Radiation Protection and Research
    • /
    • v.23 no.1
    • /
    • pp.7-15
    • /
    • 1998
  • In order to evaluate the effectiveness of some decontamination agents against skin contamination of $^{60}Co$ and $^{137}Cs$, the experiments were carried out in this study. In the experiments, pig skin was used instead of human skin , $^{60}CoC1_2$ and $^{137}CsCl$ were used the liquid sources of skin contamination. To examine the effectiveness of decontamination agents, skin decontamination was tried using soup, EDTA, KAERICON which was developed for decontamination of radionulides on the surface of building structure, and new decontamination agents such as IOCON, TRICON, and CHARCON, which were developed in this study. The absorption of radionuclides through the skin was evaluated by the gamma-tay detection on the surface of sample skin after radionuclides were penetrated into the skin during 16 hour soiling time. The results of this absorption experiment indicated that 11.5% and 3.2% of initial amounts of $^{137}Cs$ and $^{60}Co$, respectively, were panerated into the skin. In the experiment to remove the residual radioactivity fixed on the skin, KAERICON showed the decontamination rates up to 52.1%(decontamination factor of 2.1) and IOCON showed the equivalent decontamination rate (decontamination factor 1.9) for $^{137}Cs$. However, IOCON and CHARCON showed the poor decontamination rates of less than 20%(decontamination factor of 1.2) for $^{60}Co$, and KAERICON showed the poor decontamination rate (decontamination factor 1.1) for $^{60}Co$. For TRICON, the decontamination factors were 1.6 to 1.8 for $^{137}Cs$, and 1.0 to 1.2 for $^{60}Co$, respectively.

  • PDF

A study on adsorption-desorption of 42K and 45Ca in soil ameliorants for floriculture (화훼용(花卉用) 토양개량재(土壤改良材)의 42K, 45Ca 흡탈착성(吸脫着性) 비교(比較) 연구(硏究))

  • Kim, Tai-Soon;Kim, Byung-Woo
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.20 no.2
    • /
    • pp.153-159
    • /
    • 1987
  • Adsorption and desorption characteristics of $^{42}K$ and $^{45}Ca$ were studied by making use of the natural zeolite, bentonite, and vermiculite. The work included that the fittness tests for the Freundlich and the Langmuir adsorption isotherms and desorption of the radionuclides from adsorbents by extracting with $NH^+_4$ ($1N-NH_4OAc$). The adsorption by the radionuclides are fitted well with both of the adsorption equations. The Langmuir adsorption maximum of $^{42}K$ is higher than that of $^{45}Ca$ by the zeolite and bentonite except vermiculite, and the values of $^{42}K$ decrease in the order of Zeolite (Zt)>Bentonite (Bt)>Vemiculite (Vt). As for $^{45}Ca$, the maximum adsorption values decrease in the order of Bt>Vt>Zt. The ionic radii of K and Ca seem to be closely related with fixation in the cavity of the zeolite that adsorb more $^{42}K$ than $^{45}Ca$. The smaller ionic size of Ca seems to be resulted in the lower adsorption of $^{45}Ca$ by the zeolite because Ca could leave easily from the cavity. Ionic size of K, however, seems to be similar with size of the cavity. $^{45}Ca$ adsorption by the bentonite, on the other hand, show higher adsorption than $^{42}K$. The higher charge density of the divalent cations than those of the monovalent cations seems to be the main consideration. For the retention strength of the adsorbed $^{42}K$ and $^{45}Ca$ by the adsorbents, a comparison is made by use of the Langmuir constant(k). The results indicated that the constant values for K are smaller than those of Ca in all the adsorbents. It seems that the smaller values of the constant, the weaker retention strength. For $^{42}K$, the percentage of desorption decrease in the order of Zt>Bt>Vt, but in the case of $^{45}Ca$, it decreases in the order of Vt>Zt>Bt. The results show that the weaker binding strength as represented by small value of the Langmuir constant, the higher percentage of the removal except fixing preferably $K^+$ by the vemiculite. In conclusion, the zeolite could adsorb much more $^{42}K$ and remove it more than others. For $^{45}Ca$, the bentonite could adsorb more and desorb less than others.

  • PDF

Modeling the Fate and Transport of Arsenic in Wetland Sediments (습지 퇴적물에서 비소의 성상과 이동 모의에 관한 수학적 모형)

  • Park, Seok-Soon;Wang, Soo-Kyun
    • Korean Journal of Ecology and Environment
    • /
    • v.36 no.4 s.105
    • /
    • pp.434-446
    • /
    • 2003
  • The fate and transport of many trace metals, metalloids, and radionuclides in porous media is closely linked to the biogeochemical reactions that occur as a result of organic carbon being sequentially degraded by different microorganisms using a series of terminal electron acceptors. The spatial distribution of these biogeochemical reactions is affected by processes that are often unique and/or characteristic to a specific environment. Generic model formulations have been developed and applied to simulate the fate and transport of arsenic in two hydrologic settings, permanently flooded freshwater sediments, namely non-vegetated wetland sediments and vegetated wetland sediments. The key physical processes that have been considered are sedimentation, effects of roots on biogeochemistry, advective transport, and differences in mixing processes. Steady-state formulations were applied to the sedimentary environments. Results of numerical simulations show that these physical processes significantly affect the chemical profiles of different electron acceptors, their reduced species, and arsenate as well as arsenite that will result from the degradation of an organic carbon source in the sediments. Even though specific biological transformations are allowed to proceed only in zones where they are thermodynamically favorable, the results show that mixing as well as abiotic reactions can make the profiles of individual electron acceptors overlap and/or appear to reverse their expected order.

Change of Oxidation/Reduction Potential of Solution by Metal-Reducing Bacteria and Roles of Biosynthesized Mackinawite (금속환원미생물에 의한 수용액의 산화/환원전위 변화 및 생합성 맥키나와이트의 역할)

  • Lee, Seung-Yeop;Oh, Jong-Min;Baik, Min-Hoon;Lee, Yong-Jae
    • Journal of the Mineralogical Society of Korea
    • /
    • v.24 no.4
    • /
    • pp.279-287
    • /
    • 2011
  • In order to identify if bacteria surviving in soils and groundwater can change the oxidation/reduction potential of groundwater, Eh values of solution that contained bacteria were measured for 2 weeks. The Eh values of the solution reacted with sulfate-reducing bacteria decreased from -120 mV to -500 mV in 5 days, and $Desulfuricans$ was superior to $Vulgaris$ in reducing the solution. The Eh value was relatively higher for the solution containing $Shewanella$, iron-reducing bacteria, showing -400 mV. During the Eh decrease by the metal-reducing bacteria, a sulfide mineral such as mackinawite (FeS) started precipitating through the microbial reducing process for sulfate and ferric iron. These results show that the ORP of natrual groundwater may be sensitive to the geomicrobial respiration. In addition, a subsurface environment where groundwater is highly reduced and sulfide minerals are largely biogenerated may be a good place to retard the migration of oxidized radionu-clides by making them precipitated as reduced forms.

Comparison of Pretreatment Methods for Determination of 55Fe and 63Ni Activity in Nuclear Wastes Sample (원자력 시설 해체 폐기물 내 55Fe 와 63Ni 방사능 분석을 위한 전처리 방법 비교 연구)

  • Lee, Hoon;Lim, Jong-Myoung;Ji, Young-Yong;Jung, Kun-Ho;Kang, Mun-Ja;Choi, Geun-Sik;Lee, Jin-Hong
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.13 no.2
    • /
    • pp.113-122
    • /
    • 2015
  • 55Fe and 63Ni are key factors in deciding the proper handling of the decommissioning of radioactive waste from nuclear facilities. For determining beta emitting radionuclides, the dismantled waste samples should be completely decomposed and separated from the sample matrix. This study reports the comparison results of the recovering efficiencies of Iron and Nickel with wet digestion methods that use various acids and alkali-fusion methods. Various matrices of NIST SRMs (1646a, 1944, 8704, 2709a, and 1633c), the recovering efficiencies of using alkali-fusion methods ranged from 95.3 to 98.3% for Iron, and from 86.6 to 88.1% for Nickel within about 2% of relative standard deviation. On the other hand, those using one of the three wet digestion methods ranged from 77.9 to 105.3% for Iron and from 40.1 to 78.5% for Nickel with over 10% of relative standard deviation. Therefore, one may draw the conclusion that the analytical results derived from Iron and Nickel using alkali-fusion methods are fairly reliable due to the recovering efficiencies observed.

Review of the Gross Alpha for Characterization of Radioactive Waste (방사성폐기물 특성평가를 위한 전알파 분석법 고찰)

  • Kim, Hyuncheol;Lim, Jong-Myoung;Jang, Mee;Park, Ji-Young
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.18 no.2_spc
    • /
    • pp.227-235
    • /
    • 2020
  • In this study, we discussed the limitations of gross alpha measurements for the characterization of radioactive wastes produced in nuclear facilities through experimental tests and Monte Carlo N-particle transport simulations. The determination of gross alpha is essential for the disposal of radioactive waste produced in nuclear facilities in Korea. The measurements of gross alpha are easy to perform and yield rapid analytical results, but it cannot be used for quantitative analysis. The error of counting efficiency for gross alpha with various masses of the deposit on planchets using KCl and 241Am was determined. The relative deviation of the counting efficiency in samples having the same mass was 20%. Uranium was extracted from the soil through acid leaching and extraction chromatography, and the concentration of U determined by inductively coupled plasma-mass spectrometry (ICP-MS) was compared with the results for gross alpha. The gross alpha was underestimated by 50% compared to the U concentration by ICP-MS. The counting efficiency depended on the energy from the alpha emitters, which differed by up to three times in determination of the counting efficiency depending on the kinds of alpha radionuclides of interest. Therefore, the gross alpha is not compatible with the sum of radioactivity for each alpha emitter and is suitable as a screening method.

Survey Study on Radioactivity of Domestic Fishery Product (국내 시중 유통 수산물에 대한 방사능 농도 조사)

  • Kim, Chang-Jong;Lim, Chung-seop;Lee, Wanno;Jang, Mee;Ji, Young-Yong;Chung, Kun-Ho;Kang, and Mun-Ja
    • Korean Journal of Food Science and Technology
    • /
    • v.47 no.6
    • /
    • pp.789-792
    • /
    • 2015
  • Samples of fishery products were tested for radioactivity by using the intake frequency data from Korea Health Statistics. The radioactivity of $^{40}K$, $^{137}Cs$, $^{134}Cs$, and $^{131}I$ was analyzed using gamma spectrometry with a simplified sample pre-treatment procedure. The radioactivity range for $^{40}K$ was 21.9-3050 Bq/kg, whereas the radioactivities of $^{137}Cs$, $^{134}Cs$, and $^{131}I$ were under minimum detectable activity which were in the range of 0.140-1.97, 0.0900-1.89 and 0.124-1.94 Bq/kg, respectively, for the three species. The results suggest that the Fukushima accident did not have a significant impact on domestic fishery products, which were analyzed during the period from 2013 to 2015. Additionally, there seemed to be no significant impact of additional exposure dose by the analyzed radionuclides.

Preparation of polymeric composites for surface contamination measurement in order to characterize nuclear facilities decommissioning (원자력시설 해체 시 특성평가를 위한 표면오염 탐지 이중구조 고분자 복합체의 제조)

  • 한명진;서범경;우주희;이근우
    • Proceedings of the Korean Radioactive Waste Society Conference
    • /
    • 2004.06a
    • /
    • pp.97-104
    • /
    • 2004
  • Double-layered polysulfone composite films, containing cerium activated yttrium silicate (CAYS) as a flour, were prepared from double casting of two polymeric solutions, and their morphology and physical strength were superior to those of single-layered composites. The prepared polymeric films consist of a dense bottom layer and a CAYS-holding top layer. The former is made of coagulating the polysulfone and methylene chloride binary solution and works as a supporter to improve the composite's physical strength, while the latter holding the inorganic fluor plays a role as an active site to detect the radioactive contamination. The prepared films revealed two distinguished, but tightly attached, double layers, their attachment being identified by morphology of the interface between two layers. As prepared by water immersion coagulation, the films have highly developed macropores, compared with a dense structure in the film prepared by evaporation. In the radionuclide detection test of the CAYS-impregnated composites, the films have reliable detection capacity at a radionuclide spotting test. The double-layered composites with the dense support layer show a better stability in holding the radionuclides spotted on the surface as well as an improvement in physical strength, compared with the single-layer composites having shortcomings such as being too porous or being brittle.

  • PDF

Isolation and Characterization of Humic Acids Present in the Soils at the Vicinity of Domestic Atomic Power Plants(NPPs) (국내 원자력 발전소 주변 토양 휴믹산의 추출 및 특성 규명)

  • Lee, Chang-Hoon;Shin, Hyun-Sang;Chung, Kun-Ho;Cho, Young-Hyun;Lee, Chang-Woo
    • Journal of Radiation Protection and Research
    • /
    • v.28 no.3
    • /
    • pp.165-172
    • /
    • 2003
  • Humic acids present in the soils at the vicinity of domestic atomic power plants(NPPs), located in Yeongkwang(YK), Uljin(UJ), Kori(KR), Koseong(KS), Wolseong(WS) area were isolated, and characterized using elemental analysis and UV/Vis, IR, CPMAS $^{13}C$ NMR spectroscopic methods. The characteristics were compared with one another and with commercial humic acid (Aldrich Co.). Molecular size distributions of the humic acids were determined using a stirred cell ultrafiltration technique. The results of elemental analysis showed that soil humic acid from UJ contains higher oxygen content than humic acids from KR and KS (O/C ratios: 0.51 (UJHA) us. 0.45(KRHA), 0.43(KSHA)). The molecular size distribution revealed that the soil humic acids of UJ and YK contained a higher percentage of larger molecules of > 30,000 daltons, compared to those of KR and KS. The spectral features obtained from UV/vis., IR and CPMAS $^{13}C$ NMR showed that the aromatic character and oxygen containing functional groups in the humic acids from UJ and YK were relatively higher than those of KR and KS. These results indicate that the soil humic acids from UJ and YK were in a higher degree of humification, which may suggest higher affinity of the humic acids with radionuclides released in the soil environments.