• Title/Summary/Keyword: Radionuclide imaging

Search Result 91, Processing Time 0.025 seconds

Internal Radiation Dosimetry in Radionuclide Therapy (방사성핵종을 이용한 치료에서 흡수선량의 평가)

  • Kim, Kyeong-Min;Lim, Sang-Moo
    • Nuclear Medicine and Molecular Imaging
    • /
    • v.40 no.2
    • /
    • pp.120-126
    • /
    • 2006
  • Radionuclide therapy has been continued for treatment of incurable diseases for past decades. Relevant evaluation of absorbed dose in radionuclide therapy is important to predict treatment output and essential for making treatment planning to prevent unexpected radiation toxicity. Many scientists in the field related with nuclear medicine have made effort to evolve concept and technique for internal radiation dosimetry in this review, basic concept of internal radiation dosimetry is described and recent progress in method for dosimetry is introduced.

Therapeutic radionuclides (치료용 방사성동위원소)

  • Choi, Sun-Ju;Hong, Young-Don;Lee, So-Young
    • Nuclear Medicine and Molecular Imaging
    • /
    • v.40 no.2
    • /
    • pp.58-65
    • /
    • 2006
  • Since the development of sophisticated molecular carriers such as octereotides for peptide receptor targeting and monoclonal antibodies against various antigens associated with specific tumor types, radionuclide therapy (RNT) employing open sources of therapeutic agents is promising modality for treatment of tumors. furthermore, the emerging of new therapeutic regimes and new approaches for tumor treatment using radionuclide are anticipated in near future. In targeted radiotherapy using peptides and other receptor based tarrier molecules, the use of radionuclide with high specific activity in formulating the radiopharmaceutical is essential in order to deliver sufficient number of radionuclides to the target site without saturating the target. In order to develop effective radiopharmaceuticals for therapeutic applications, it is crucial to carefully consider the choice of appropriate radionuclides as well as the tarrier moiety with suitable pharmacokinetic properties that could result in good in vivo localization and desired excretion. Up to date, only a limited number of radionuclides have been applied in radiopharmaceutical development due to the constraints in compliance with their physical half-life, decay characteristics, cost and availability in therapeutic applications. In this review article, we intend to provide with the improved understanding of the factors of importance of appropriate radionuclide for therapy with respect to their physical properties and therapeutic applications.

Review of Radionuclide Treatment for Neuroendocrine Tumors (신경내분비종양의 방사성핵종 치료)

  • Jeong, Hwan-Jeong
    • Nuclear Medicine and Molecular Imaging
    • /
    • v.40 no.2
    • /
    • pp.90-95
    • /
    • 2006
  • Neuroendocrine tumors (NETs) consist of a heterogeneous group of tumors that are able to uptake neuroamine and/or specific receptors, such as somatostatin receptors, which can play important roles of the localization and treatment of these tumors. When considering therapy with radionuclides, the best radioligand should be carefully investigated. $^{131}I$-MIBG and beta-particle emitter labeled somatostatin analogs are well established radionuclide therapy modalities for NETs. $^{111}In,\;^{90}Y\;and\;^{177}Lu$ radiolabeled somatostatin analogues have been used for treatment of NETs. Further, radionuclide therapy modalities, for example, radioimmunotherapy, radiolabeled peptides such as minigastrin are currently under development and in different phases of clinical investigation. for all radionuclides used for therapy, long-term and survival statistics are not yet available and only partial tumour responses have been obtained using $^{131}I$-MIBG and $^{111}In$-octreotide. Experimental results using $^{90}Y$-DOTA-lanreotide as well as $^{90}Y-DOTA-D-Phe1-Tyr^3-octreotide$ and/or $^{177}Lu-DOTA-Tyr^3-octreotate$ have indicated the possible clinical potential of radionuclides receptor-targeted radiotherapy it may be hoped that the efficacy of radionuclide therapy will be improved by co-administration of chemotherapeutic drugs whose antitumoral properties may be synergistic with that of irradiation.

In Vivo Reporter Gene Imaging: Recent Progress of PET and Optical Imaging Approaches

  • Min, Jung-Joon
    • Bioinformatics and Biosystems
    • /
    • v.1 no.1
    • /
    • pp.17-27
    • /
    • 2006
  • Recent progress in the development of non-invasive imaging technologies continues to strengthen the role of molecular imaging biological research. These tools have been validated recently in variety of research models, and have been shown to provide continuous quantitative monitoring of the location(s), magnitude, and time-variation of gene delivery and/or expression. This article reviews the use of radionuclide, magnetic resonance, and optical imaging technologies as they have been used in imaging gene delivery and gene expression for molecular imaging applications. The studies published to date demonstrate that noninvasive imaging tools will help to accelerate pre-clinical model validation as well as allow for clinical monitoring of human diseases.

  • PDF

Stress Testing and Imaging Protocols for Myocardial Perfusion Studies (심근관류영상을 위한 심근부하 방법 및 검사 프로토콜)

  • Kim, Seong-Min
    • Nuclear Medicine and Molecular Imaging
    • /
    • v.43 no.3
    • /
    • pp.179-195
    • /
    • 2009
  • Scince $^{201}$TI was introduced as a myocardial perfusion imaging agent in the early 1970s, scintigraphic evaluation of myocardial perfusion for the diagnosis of coronary artery disease is a valuable noninvasive diagnostic imaging modality. Stress radionuclide myocardial perfusion imaging is widely accepted to have high diagnostic and prognostic use in the assessment of patients with known or suspected coronary artery disease. With wise use of this nonivasive imaging technique, more patients are referred for stress perfusion imaging. Until now various protocols for stress testing and myocardial imaging were developed and used in worldwide. This article presented various protocols of stress testing and myocardial imaging for clinical use.

FAP Inhibitors as Novel Small Molecules for Cancer Imaging using Radionuclide

  • Anvar Mirzaei;Jung-Joon Min;Dong-Yeon Kim
    • Journal of Radiopharmaceuticals and Molecular Probes
    • /
    • v.9 no.1
    • /
    • pp.49-55
    • /
    • 2023
  • Tumors are encircled by various non-cancerous cell types in the extracellular matrix, including fibroblasts, endothelial cells, immune cells, and cytokines. Fibroblasts are the most critical cells in the tumor stroma and play an important role in tumor development, which has been highlighted in some epithelial cancers. Many studies have shown a tight connection between cancerous cells and fibroblasts in the last decade. Regulatory factors secreted into the tumor environment by special fibroblast cells, cancer-associated fibroblasts (CAFs), play an important role in tumor and vessel development, metastasis, and therapy resistance. This review addresses the development of FAP inhibitors, emphasizing the first, second, and latest generations. First-generation inhibitors exhibit low selectivity and chemical stability, encouraging researchers to develop new scaffolds based on preclinical and clinical data. Second-generation enzymes such as UAMC-1110 demonstrated enhanced FAP binding and better selectivity. Targeted treatment and diagnostic imaging have become possible by further developing radionuclide-labeled fibroblast activation protein inhibitors (FAPIs). Although all three FAPIs (01, 02, and 04) showed excellent preclinical and clinical findings. The final optimization of these FAPI scaffolds resulted in FAPI-46 with the highest tumor-to-background ratio and better binding affinity.

Thyroid imaging in 53 cats with hyperthyroidism using technetium-99m as pertechnetate

  • Lee, Young-won
    • Korean Journal of Veterinary Research
    • /
    • v.39 no.2
    • /
    • pp.394-397
    • /
    • 1999
  • Thyroid imaging was performed in 53 hyperthyroid cats with technetium-99m as pertechnetate($^{99m}TcO_{4}$). Increased radionuclide accumulation was found in all cats. Thirty-four cats had bilateral enlargements of the thyroid glands and 14 cats had unilateral enlargements. Five cats had multi-focal accumulation of $^{99m}TcO_{4}$ in the ventral neck or mediastinum. Conclusively, nuclear thyroid image is useful method in diagnosis of feline hyperthyroidism.

  • PDF

Determination of Brain Death by $^{99m}Tc$ DTPA and $^{99m}Tc$ HMPAO Images ($^{99m}Tc$ DTPA와 $^{99m}Tc$ HMPAO를 이용한 뇌사결정)

  • Kim, Jong-Kyu;Sohn, Hyung-Sun;Kim, Sung-Hoon;Yang, Woo-Jin;Lee, Sung-Yong;Chung, Soo-Kyo;Park, Seog-Hee;Kim, Choon-Yul;Bahk, Yong-Whee;Shinn, Kyung-Sub
    • The Korean Journal of Nuclear Medicine
    • /
    • v.29 no.1
    • /
    • pp.15-21
    • /
    • 1995
  • To evaluate availability of cerebral radionuclide imaging for diagnosis of brain death, we examined 25 patients with a suspected clinical diagnosis of brain death. 8 patients were studied by $^{99m}Tc$ DTPA and 15 patients were studied by $^{99m}Tc$ HMPAO (Hexamethyl propyleneamine oxime). Seven patients with $^{99m}Tc$ DTPA studies revealed absence of cerebral blood flow and sagittal sinus activity. All of 15 patients with $^{99m}Tc$ HMPAO studies revealed complete absence of cerebral perfusion. The results of the cerebral radionuclide studies of brain death correlated with other clinical conditions, such as intracranial pressure(ICP), EEG, transcranial doppler sonography(TCDS), and neurologic examination. The ICP of 8 patients, who are confirmed by brain death with $^{99m}Tc$ HMPAO study are elevated in all cases. In conclusion, cerebral radionuclide imaging for diagnosis of brain death is available. $^{99m}Tc$ HMPAO imaging is unequivocal, easily interpreted, well reflect the physiologic state of increased ICP, and provides adequate assessment of posterior fossa activity. In addition, the SPECT imaging with $^{99m}Tc$ HMPAO produces more accurate results due to it's superiority of image contrast and proper localization of radiopharmaceutical distribution than conventional planar imaging.

  • PDF

Bone scintigraphy in patients with pain

  • Shin, Seung Hyeon;Kim, Seong Jang
    • The Korean Journal of Pain
    • /
    • v.30 no.3
    • /
    • pp.165-175
    • /
    • 2017
  • Nuclear medicine imaging is widely used in pain medicine. Low back pain is commonly encountered by physicians, with its prevalence from 49% to 70%. Computed tomography (CT) or magnetic resonance imaging (MRI) are usually used to evaluate the cause of low back pain, however, these findings from these scans could also be observed in asymptomatic patients. Bone scintigraphy has an additional value in patients with low back pain. Complex regional pain syndrome (CRPS) is defined as a painful disorder of the extremities, which is characterized by sensory, autonomic, vasomotor, and trophic disturbances. To assist the diagnosis of CRPS, three-phase bone scintigraphy is thought to be superior compared to other modalities, and could be used to rule out CRPS due to its high specificity. Studies regarding the effect of bone scintigraphy in patients with extremity pain have not been widely conducted. Ultrasound, CT and MRI are widely used imaging modalities for evaluating extremity pain. However, SPECT/CT has an additional role in assessing pain in the extremities.