• Title/Summary/Keyword: Radionuclide concentration

Search Result 99, Processing Time 0.028 seconds

Efficacy and safety of radioiodine therapy for 10 hyperthyroid cats: a retrospective case series study in South Korea

  • Yeon Chae;Jae-Cheong Lim;Taesik Yun;Yoonhoi Koo;Dohee Lee;Mhan-Pyo Yang;Hakhyun Kim;Byeong-Teck Kang
    • Korean Journal of Veterinary Research
    • /
    • v.64 no.2
    • /
    • pp.10.1-10.9
    • /
    • 2024
  • Hyperthyroidism, characterized by elevated thyroid hormone levels and thyroid gland hyperplasia or adenoma, is a prevalent endocrinopathy in older cats. Treatment options include antithyroid drugs, surgical thyroidectomy, and radioiodine therapy (RAIT), which is non-invasive treatment option that can achieve complete remission. However, efficacy and safety of RAIT in hyperthyroid cats have not been investigated in South Korea. This study includes 10 hyperthyroid cats with RAIT. Initial assessments comprised history, physical examination, blood analysis, and serum total T4 (tT4) concentration. Thyroid scintigraphy revealed hyperactivity and enlargement of thyroid gland at 24 hours before the RAIT. Radioiodine (RAI) was injected subcutaneously with 2 to 6 mCi, determined by the fixed dose or the scoring system based on severity of clinical signs, tT4 concentration, and thyroid size individually. After RAIT, the concentration of serum tT4 and liver enzymes were significantly decreased at discharge. However, no significant differences were noted in blood urea nitrogen, creatinine, symmetric dimethylarginine, hematocrits, and white blood cell counts pre- and post-treatment. Although 4 cats received RAI twice, clinical signs disappeared and tT4 levels decreased following the RAIT. All 10 cats achieved complete remission after 6 months without critical adverse effect. The safety and the effectiveness of RAIT was confirmed based on protocols reported other countries. Therefore, RAIT could be considered the treatment option and prevent adverse effects from medication or surgery. This preliminary study presents the first evaluation of RAIT for hyperthyroid cats using locally produced RAI in South Korea and provide valuable insight for clinicians and further studies.

Determination of Radionuclide Concentration Limit for Low and Intermediate-level Radioactive Waste Disposal Facility I : Application of IAEA Methodology for Underground Silo Type Disposal Facility (중저준위 방사성폐기물 처분시설의 처분농도제한치 설정에 대한 고찰 I : IAEA 방법론의 동굴처분시설 적용)

  • Hong, Sung-Wook;Kim, Min Seong;Jung, Kang Il;Park, Jin Beak
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.15 no.3
    • /
    • pp.257-264
    • /
    • 2017
  • For the safe disposal of intermediate level radioactive waste according to the Nuclear Safety and Security Commission's notice and KORAD's management plan for low and intermediate level radioactive waste, the disposal concentration limit was derived based on the IAEA methodology. The evaluation of the derived disposal concentration limit revealed that it is not suitable as a practical limit for intermediate level radioactive waste. This is because the disposal concentration limit according to the IAEA methodology is derived using a single value of radioactive waste density and the disposal facility's volume. The IAEA methodology is suitable for setting the concentration limit for vault type disposal, which consists of a single type of waste, whereas an underground silo type disposal facility is composed of several types of radioactive waste, and thus the IAEA methodology has limitations in determining the disposal concentration limit. It is necessary to develop and apply an improved method to derive the disposal concentration limit for intermediate level radioactive waste by considering the radioactivity of various types of radioactive waste, the corresponding scenario evaluation results, and the regulatory limit.

Determination of Radionuclide Concentration Limit for Low and Intermediate-Level Radioactive Waste Disposal Facility II: Application of Optimization Methodology for Underground Silo Type Disposal Facility (중저준위방사성폐기물 처분시설의 처분농도제한치 설정에 대한 고찰 II: 최적화 방법론 개발 및 적용)

  • Hong, Sung-Wook;Kim, Min Seong;Jung, Kang Il;Park, Jin Beak
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.15 no.3
    • /
    • pp.265-279
    • /
    • 2017
  • The Gyeongju underground silo type disposal facility, approved for use in December 2014, is in operation for the disposal of low and very low-level radioactive wastes, excluding intermediate-level waste. That is why the existing low-level radioactive waste level has been subdivided and the concentration limit value for intermediate-level waste has been changed in accordance with Nuclear Safety Commission Notice 2014-003. For the safe disposal of intermediate-level wastes, new optimization methodology for calculating the concentration limit of intermediate radioactive level wastes at an underground silo type disposal facility was developed. According to the developed optimization methodology, concentration limits of intermediate-level wastes were derived and the inventory of radioactive nuclides was evaluated. The operation and post closure scenarios were evaluated for the derived radioactive nuclide inventory and the results of all scenarios were confirmed to meet the regulatory limit. However, in case of $^{14}C$, it was confirmed that additional radioactivity limitation through a well scenario was needed in addition to the limit of disposal concentration. It was confirmed that the derived intermediate concentration limit of radioactive waste can be used as the intermediate-level waste concentration limit for the underground disposal facility. For the safe disposal of intermediate-level wastes, KORAD plans to acquire additional data from the radioactive waste generator and manage the cumulative radioactivity of $^{14}C$.

Distribution of natural radionuclide in the Geum river sediment (금강수계 퇴적물 중 천연 방사성핵종 분포 조사)

  • Seol, Bitna;Cho, Yoonhae;Min, Kyungok;Kim, Wansuk;Oh, Dayeon;Kil, Gibeom;Yang, Yunmo;Lee, Junbae;Kim, Byungik;Cheon, Seok
    • Analytical Science and Technology
    • /
    • v.30 no.5
    • /
    • pp.262-269
    • /
    • 2017
  • The concentration of natural radioactivity in the sediment of the Geum River was investigated. The river and lake sediment samples were collected at 23 points during September to November, 2015 and March to April, 2015, respectively. The gamma-rays emitted from the $^{226}Ra$ and $^{232}Th$ decay series and $^{40}K$ were measured with a high purity germanium (HPGe) gamma detector. The average radioactivity concentrations of the $^{226}Ra$, $^{232}Th$ decay series and $^{40}K$ for the river sediment was found to be $15.6{\pm}0.6$, $33.8{\pm}1.2$, $789.8{\pm}26.0Bq/kg$, respectively, while for the lake sediment, the concentrations were $17.1{\pm}0.5$, $37.8{\pm}1.1$, $269.4{\pm}9.6Bq/kg$, respectively. Spearman's correlation was conducted to compare the radioactivity concentration and properties of the sediment. The radioactivity concentration of the $^{232}Th$ decay series showed a negative correlation with the particle size of the sediment, and was measured to be higher than the $^{226}Ra$ decay series according to mobility of the radionuclides. The radioactivity concentration of $^{40}K$ showed a negative correlation with organic matter content. The concentration of $^{40}K$ in the lake sediment was lower than that in the river sediment.

Mineral Movement in Relation to Pollination in Two Perennial Plants (두 다년생 식물에 있어서 수분에 따른 무기물의 이도 양상)

  • 강혜순
    • Journal of Plant Biology
    • /
    • v.34 no.2
    • /
    • pp.151-158
    • /
    • 1991
  • A new technique involving gamma-spectrometry was used to determine the effects of pollination on mineral uptake in petals, ovaries and leaves of tulips and daffodils. A gamma-emitting radionu'::lide solution containing selenium-75, cesium-137, manganese-54, and zinc-65 was applied to the roots of tulips and daffodils growing in water. Mineral uptake was monitored in plant parts over a 24 day period. Pollinated tulip flowers showed a rapid withdrawal of minerals from the petals and an increase in ovary mineral content, while such a source-sink relationship was not established in daffodils. In both species, the concentration of most minerals in petals and ovaries declined prior to abortion of the plant part. The roots and bulbs of the plants contained the vast majority of the labeled minerals. This study demonstrated a possibility that certain plant parts could be isolated and monitored for mineral uptake over time without destruction.uction.

  • PDF

Sorption Behavior of Cesium-137, Cerium-144 and Cobalt-60 on Zeolites (제오라이트에 대한 세슘-137, 세슘-144 및 코발트-60 흡착거동)

  • Kim, Seok-Chul;Lee, Byung-Hun
    • Journal of Radiation Protection and Research
    • /
    • v.10 no.1
    • /
    • pp.3-13
    • /
    • 1985
  • The sorption behavior of some typical fission products such as Cs-137, long-lived radionuclide; Ce-144, rare-earth element; and Co-60, corrosion product on zeolite A, zeolite F-9 (faujasite) and amorphous zeolite was determined with the salt concentrations, 0.01 M- to 2.0 M- nitric acid and ammonium nitrate, and the shaking time, 15 minutes interval from 15 minute to 90 minute. Kd values were obtained through the batch experiment. In conclusion, the optimal conditions for isolation and removal of the typical radionuclides are as following: zeolite, amorphous zeolite; concentration, $0.01\;M-HNO_3\;and\;0.1\;M-NH_4NO_3$; pH4; shaking time, one hour; the most effective species, Cs-137.

  • PDF

Assessment of soil density and distribution coefficient of Cs-137 for deriving DCGLs in korea research reactor unit 1 and 2

  • Geun-Ho Kim;Ilgook Kim;Kwang Pyo Kim
    • Nuclear Engineering and Technology
    • /
    • v.56 no.7
    • /
    • pp.2452-2457
    • /
    • 2024
  • To obtain site-specific values of the Derived Concentration Guideline Levels (DCGLs) for decommissioning of KRR-1&2, the soil density and distribution coefficient values for Cs-137, a major contaminant radionuclide, were determined. The soil density was evaluated according to the test method established by the Korean Agency for Technology and Standards of the Ministry of Trade, Industry, and Energy (KATS). The distribution coefficient was evaluated using a batch test. The validity of using the evaluated soil density and distribution coefficient as site-specific values was assessed through radiation dose assessment reflecting these values. Average soil density value obtained was 1.738 g/cm3, which was within the typical range of normal soil density, 1.0-1.8 g/cm3. The average distribution coefficient value was 7,754 mL/g. Applying the maximum, average, and minimum values of the evaluated soil density and distribution coefficient showed similar radiation dose results, thus suggesting that it is reasonable to use the average values of each parameter as site-specific values. Findings of this study can help determine DCGLs that reflect the characteristics of the research reactor site.

[ $^{210}Po$ ] Accumulation in the Pelagic Community of Yongil Bay, Korea (영일만 표영군집내의 $^{210}Po$ 축적)

  • SUH Hae-Lip;KIM Seong-Soo;GO You-Bong;NAM Ki Wan;YUN Sung Gyu;YOON Yang-Ho;JO Soo-Gun;HONG Jae-Sang
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.28 no.2
    • /
    • pp.219-226
    • /
    • 1995
  • A study was made of the concentration of the naturally occurring radionuclide $^{210}Po$ in seawater, plankton and fishes collected from Yongil Bay, Korea, in summer 1993. The mean value of the $^{210}Po$ concentration in sea water was determined to be about 1.9 mBq/l, with the proportion of the dissolved forms being about $46\%$. The mean $^{210}Po$ concentration factor in the centric diatom Skeletonema costatum, comprises > $95\%$ of the total phytoplankton cell number, was $7.6\times10^4$. Of five species of zooplankton examined, four species (two copepods and two mysids) had $^{210}Po$ concentrations in the range of $^{210}Po$ mBq/g dry weight. A copepod Labidocera bipinnata, however, was exceptional with a particularly high $^{210}Po$ level of 2,070 mBq/g. This indicates that L. bipinnata is primarily a raptorial feeder. The concentration of $^{210}Po$ in the pyloric caecum of pelagic fishes was 2,979-3,811 mBq/g, with the concentration factors of $3.4-4.3\times10^6$. The food chain concentration of $^{210}Po$ occurred as follows: phytoplankton < filter feeding copepods < omnivorous mysids < raptorial copepod < pelagic fishes.

  • PDF

The Evaluation of Difference according to Image Scan Duration in PET Scan using Short Half-Lived Radionuclide (단 반감기 핵종을 이용한 PET 검사 시 영상 획득 시간에 따른 정량성 평가)

  • Hong, Gun-Chul;Cha, Eun-Sun;Kwak, In-Suk;Lee, Hyuk;Park, Hoon;Choi, Choon-Ki;Seok, Jae-Dong
    • The Korean Journal of Nuclear Medicine Technology
    • /
    • v.16 no.1
    • /
    • pp.102-107
    • /
    • 2012
  • Purpose : Because of the rapid physical decay of the short half-lived radionuclide, counting of event for image is very limited. In this reason, long scan duration is applied for more accurate quantitative analysis in the relatively low sensitive examination. The aim of this study was to evaluate the difference according to scan duration and investigate the resonable scan duration using the radionuclide of 11C and 18F in PET scan. Materials and Methods : 1994-NEMA Phantom was filled with 11C of $30.08{\pm}4.22MBq$ and 18F of $40.08{\pm}8.29MBq$ diluted with distilled water. Dynamic images were acquired 20frames/1minute and static image was acquired for 20minutes with 11C. And dynamic images were acquired 20frames/2.5minutes and static image was acquired for 50minutes with 18F. All of data were applied with same reconstruction method and time decay correction. Region of interest (ROI) was set on the image, maximum radioactivity concentration (maxRC, kBq/mL) was compared. We compared maxRC with acquired dynamic image which was summed one bye one to increase the total scan duration. Results : maxRC over time of 11C was $3.85{\pm}0.45{\sim}5.15{\pm}0.50kBq/mL$ in dynamic image, and static image was $2.15{\pm}0.26kBq/mL$. In case of 18F, the maxRC was $9.09{\pm}0.42{\sim}9.48{\pm}0.31kBq/mL$ in dynamic image and $7.24{\pm}0.14kBq/mL$ in static. In summed image of 11C, as total scan duration was increased to 5, 10, 15, 20minutes, the maxRC were $2.47{\pm}0.4$, $2.22{\pm}0.37$, $2.08{\pm}0.42$, $1.95{\pm}0.55kBq/mL$ respectively. In case of 18F, the total scan duration was increased to 12.5, 25, 37.5, and 50minutes, the maxRC were $7.89{\pm}0.27$, $7.61{\pm}0.23$, $7.36{\pm}0.21$, $7.31{\pm}0.23kBq/mL$. Conclusion : As elapsed time was increased after completion of injection, the maxRC was increased by 33% and 4% in dynamic study of 11C and 18F respectively. Also the total scan duration was increased, the maxRC was reduced by 50% and 20% in summed image of 11C and 18F respectively. The percentage difference of each result is more larger in study using relatively shorter half-lived radionuclide. It appears that the accuracy of decay correction declined not only increment of scan duration but also increment of elapsed time from a starting point of acquisition. In study using 18F, there was no big difference so it's not necessary to consider error of quantitative evaluation according to elapsed time. It's recommended to apply additional decay correction method considering decay correction the error concerning elapsed time or to set the scan duration of static image less than 5minutes corresponding 25% of half life in study using shorter half-lived radionuclide as 11C.

  • PDF

Characteristics of Groundwater Environment in Highly Enriched Areas of Natural Radionuclides (고함량 자연방사성물질 우려지역에 대한 지하수 환경 특성 연구)

  • Jeong, Do-Hwan;Eom, Ig-Chun;Yoon, Jeong-Ki;Kim, Moon-Su;Kim, Yeong-Kyoo;Kim, Tae-Seung
    • Journal of Soil and Groundwater Environment
    • /
    • v.15 no.6
    • /
    • pp.9-16
    • /
    • 2010
  • Groundwater sampling was performed at 38 wells where they are located in the areas with high uranium and radon (marked as A and B, respectively) concentrations, which were based on the previous research results. In-situ parameters (temperature, pH, EC, Eh, DO) and natural radionuclides (uranium and radon) were analyzed to figure out the characteristics of groundwater environments. In-situ data did not show any relations to natural radionuclide data, which could be caused by groundwater mixing, depths of wells, and geological settings, etc. But the highest radon well presented relatively low temperature value and the highest uranium well presented relatively low pH values The highest uranium concentration ranging $1.14{\sim}188.19{\mu}g/L$ showed in the area of A region consisted of Jurassic two-mica granite. The areas of Jurassic biotite granite and Cretaceous granite in the A region have the uranium concentrations ranging $0.10{\sim}49.78{\mu}g/L$ and $0.36{\sim}3.01{\mu}g/L$, respectively. The uranium values from between wells of community water systems (CWSs) penetrating fractured bed-rock aquifers and personal boreholes settled in shallow aquifers near the wells of CWSs show big differences. It implies that the groundwaters of the two areas have evolved from different water-rock interaction paths that may caused by various types of wells having different aquifers. High radon activities in the area of B region composed of Precambrian gneiss showed ranging from 6,770 to 64,688 pCi/L. Even though the wells are located in the same geological settings, their rodon concentration presented different according to depth and distance.