DOI QR코드

DOI QR Code

Assessment of soil density and distribution coefficient of Cs-137 for deriving DCGLs in korea research reactor unit 1 and 2

  • Geun-Ho Kim (KRR Decommissioning Team, Korea Atomic Energy Research Institute) ;
  • Ilgook Kim (KRR Decommissioning Team, Korea Atomic Energy Research Institute) ;
  • Kwang Pyo Kim (Department of Nuclear Engineering, Kyung Hee University)
  • Received : 2023.08.16
  • Accepted : 2024.02.03
  • Published : 2024.07.25

Abstract

To obtain site-specific values of the Derived Concentration Guideline Levels (DCGLs) for decommissioning of KRR-1&2, the soil density and distribution coefficient values for Cs-137, a major contaminant radionuclide, were determined. The soil density was evaluated according to the test method established by the Korean Agency for Technology and Standards of the Ministry of Trade, Industry, and Energy (KATS). The distribution coefficient was evaluated using a batch test. The validity of using the evaluated soil density and distribution coefficient as site-specific values was assessed through radiation dose assessment reflecting these values. Average soil density value obtained was 1.738 g/cm3, which was within the typical range of normal soil density, 1.0-1.8 g/cm3. The average distribution coefficient value was 7,754 mL/g. Applying the maximum, average, and minimum values of the evaluated soil density and distribution coefficient showed similar radiation dose results, thus suggesting that it is reasonable to use the average values of each parameter as site-specific values. Findings of this study can help determine DCGLs that reflect the characteristics of the research reactor site.

Keywords

Acknowledgement

This work was supported by a research grant from the Korea Atomic Energy Research Institute (KAERI) [Grant No. 521240-23, South Korea].

References

  1. NSSC, Criteria for Reuse of Site and Buildings after Completion of Decommissioning of Nuclear Facilities, Nuclear Safety and Security Commission, No. 2021-11, 2021. 
  2. G. Kim, M. Kim, G. Ryu, S. Lee, K.P. Kim, Derivation of site-specific derived concentration guideline levels at Korea Research Reactor 1 and 2 sites using probabilistic analysis, Appl. Radiat. Isot. 194 (2023) 110718. 
  3. ZIONSOLUTIONS, Sorption (Kd) Measurements in Support of Dose Assessments for Zion Nuclear Station Decommissioning, ZIONSOLUTIONS, TSD 14-020, 2012. 
  4. S. Maity, S. Mishra, S. Bhalke, G.G. Pandit, V.D. Puranik, H.S. Kushwaha, Estimation of distribution coefficient of polonium in geological matrices around uranium mining site, J. Radioanal. Nucl. Chem. 290 (2011) 75-79.
  5. S. Kumar, A.S. Kar, N. Rawat, S. Maity, S. Mishra, G.G. Pandit, B.S. Tomar, Distribution coefficients of radionuclides around uranium mining area and effect of different analytical parameters on their determination, J. Radioanal. Nucl. Chem. 304 (2015) 727-733. 
  6. S. Manoj, M. Thirumurugan, L. Elango, Determination of distribution coefficient of uranium from physical and chemical properties of soil, Chemosphere 244 (2020) 125411. 
  7. S. Chang, J. Park, W. Um, Study of mobility for radionuclides in nuclear facility sites, Econ. Environ. Geol. 51 (2) (2018) 99-111. 
  8. C. Elejaldea, M. Herranza, F. Legardaa, F. Romerob, Determination and analysis of distribution coefficients of 137Cs in soils from Biscay (Spain), Environ. Pollut. 110 (2000) 157-164. 
  9. D. Bugai, J. Smith, M.A. Hoque, Solid-liquid distribution coefficients (Kd-s) of geological deposits at the Chernobyl Nuclear Power Plant site with respect to Sr, Cs and Pu radionuclides: a short review, Chemosphere 242 (2020) 125175. 
  10. F. Durec, Distribution of 137Cs in soil in Central Slovakia and fast prediction of contamination, J. Radioanal. Nucl. Chem. 231 (1-2) (1998) 163-165. 
  11. J. Zheng, K. Tagami, S. Uchida, S. Shibutani, K. Ishida, T. Hamamoto, Soil-soil solution distribution coefficients of global fallout 239Pu and 237Np in Japanese paddy soils, Chemosphere 291 (2022) 132775. 
  12. Y. Nakamaru, K. Tagami, S. Uchida, Distribution coefficient of selenium in Japanese agricultural soils, Chemosphere 58 (2005) 1347-1354. 
  13. Y. Nakamaru, S. Uchida, Distribution coefficients of tin in Japanese agricultural soils and the factors affecting tin sorption behavior, J. Environ. Radioact. 99 (2008) 1003-1010. 
  14. N.K. Ishikawa, S. Uchida, K. Tagami, Distribution coefficients for 85Sr and 137Cs in Japanese agricultural soils and their correlations with soil properties, J. Radioanal. Nucl. Chem. 277 (2) (2008) 433-439. 
  15. J.R. Twining, T.E. Payne, T. Itakura, Soil-water distribution coefficients and plant transfer factors for 134Cs, 85Sr and 65Zn under field conditions in tropical Australia, J. Environ. Radioact. 71 (2004) 71-87. 
  16. U.S.NRC, Development of Probabilistic RESRAD 6.0 and RESRAD-BUILD 3.0 Computer Codes, U.S. Nuclear Regulatory Commission, NUREG/CR-6697, 2000. 
  17. U.S.NRC, Rancho Seco License Termination Plan Revision 1, U.S. Nuclear Regulatory Commission, 2008. 
  18. M.I. Sheppard, Radionuclide Partitioning coefficients in soils and plants and their correlation, Health Phys. 49 (1985) 106-115. 
  19. S.C. Sheppard, W.G. Evenden, The Assumption of linearity in soil and plant concentration ratios: an experimental evaluation, J. Environ. Radioact. 7 (1988) 221-247. 
  20. KS, Test method for particle size distribution of soils, Korean Industrial Standards, KS F 2302:2022, (2022). 
  21. KS, Method for standard penetration test, Korean Industrial Standards, KS F 2307:2022, (2022). 
  22. KS, Test method for density of soil in place by sand-cone method, Korean Industrial Standards, KS F 2311:2022, (2022). 
  23. J. Dawid, K. Dorota, A comparison of methods for the determination of cation Exchange capacity of soils, ECOL CHEM ENG S 21 (3) (2014) 487-498. 
  24. M.L. Davis, S.J. Masten, Principles of Environmental Engineering and Science, McGraw-Hill, New York, 2004. 
  25. Battelle, Methods for determining radionuclide retardation factors: status report, Battelle, PNL-3349 (1980). 
  26. ASTM, Standard test method for distribution coefficients of inorganic species by batch method, American Society for Testing and Materials C1733-21 (2021). 
  27. C. Woo, P. Chang, The particle size distribution of Korean soils, Proceedings of the Korean Society of Agricultural Engineers Conference (2003). Korea, November 11, 2003. 
  28. C.W. Park, S. Kim, I. Kim, I. Yoon, J. Hwang, J. Kim, H. Yang, B.K. Seo, Sorption behavior of cesium on silt and clay soil fractions, J. Environ. Radioact. 233 (2021) 106592. 
  29. Cornell University Cooperative Extension, Agronomy fact sheet series: cation Exchange capacity (CEC), cornell university cooperative extension, Fact Sheet 22 (2007). 
  30. P.R. Chaudhari, D.V. Ahire, V.D. Ahire, M. Chkravarty, S. Maity, Soil bulk density as related to soil texture, organic matter content and available total nutrients of coimbatore soil, Int. j. sci. res. publ. 3 (2) (2013) 1-8. 
  31. M.F. Nawaz, G. Bourrie, F. Trolard, Soil compaction impact and modelling. A review, Agron. Sustain. Dev. 33 (2013) 291-309. 
  32. SSSA, Glossary of Soil Science Terms, Soil Science Society of America, Madison, 1996. 
  33. U.S. EPA, Understanding variation in partition coefficient, Kd, values, volume II, in: Review of Geochemistry and Available Kd Values for Cadmium,Cesium, Chromium, Lead, Plutonium, Radon, Strontium, Thorium, Tritium (3H), and Uranium, U.S. Environmental Protection Agency, 1999. EPA402-R-99-004B. 
  34. C.F. Baes, R.D. Sharp, A proposal for estimation of soil leaching and leaching constants for use in assessment models, J. Environ. Qual. 12 (1) (1983) 17. 
  35. M.I. Sheppard, D.H. Thibault, Default soil/liquid partition coefficients, kds, for four major soil types: a compendium, Health Phys. 59 (4) (1990) 471-482. 
  36. M.L. Jackson, Y. Hseung, R.B. Corey, E.J. Evans, R.C.V. Heuvel, Weathering sequence of claysize minerals in soils and sediments: II. Chemical weathering of layer silicates, Soil Sci. Soc. Am. Proc. 6 (1952) 3-6. 
  37. M.L. Jackson, Weathering of Primary and Secondary Minerals in Soils, 9th International Congress of Soil Science, Australia, 1968, 1968. 
  38. B.L. Sawhney, Sorption of cesium from dilute solutions, Soil Sci. Soc. Am. Proc. 29 (1965) 25-28. 
  39. Y. Kim, R.J. Kirkpatrick, R.T. Cygan, Cs-133 NMR study of cesium on the surfaces of kaolinite and illite, Geochem. Cosmochim. Acta 60 (1996) 4059-4074. 
  40. J. Chorover, M.J. DiChiaro, O.A. Chadwick, Structural charge and cesium retention in a chronosequence of tephritic soils, Soil Sci. Soc. Am. J. 63 (1999) 169-177.