• Title/Summary/Keyword: Radionuclide concentration

Search Result 96, Processing Time 0.026 seconds

A Method to Calculate Off-site Radionuclide Concentration for Multi-unit Nuclear Power Plant Accident (다수기 원자력발전소 사고 시 소외 방사성물질 농도 계산 방법)

  • Lee, Hye Rin;Lee, Gee Man;Jung, Woo Sik
    • Journal of the Korean Society of Safety
    • /
    • v.33 no.6
    • /
    • pp.144-156
    • /
    • 2018
  • Level 3 Probabilistic Safety Assessment (PSA) is performed for the risk assessment that calculates radioactive material dispersion to the environment. This risk assessment is performed with a tool of MELCOR Accident Consequence Code System (MACCS2 or WinMACCS). For the off-site consequence analysis of multi-unit nuclear power plant (NPP) accident, the single location (Center Of Mass, COM) method has been usually adopted with the assumption that all the NPPs in the nuclear site are located at the same COM point. It was well known that this COM calculation can lead to underestimated or overestimated radionuclide concentration. In order to overcome this underestimation or overestimation of radionuclide concentrations in the COM method, Multiple Location (ML) method was developed in this study. The radionuclide concentrations for the individual NPPs are separately calculated, and they are summed at every location in the nuclear site by the post-processing of radionuclide concentrations that is based on two-dimensional Gaussian Plume equations. In order to demonstrate the efficiency of the ML method, radionuclide concentrations were calculated for the six-unit NPP site, radionuclide concentrations of the ML method were compared with those by COM method. This comparison was performed for conditions of constant weather, yearly weather in Korea, and four seasons, and the results were discussed. This new ML method (1) improves accuracy of radionuclide concentrations when multi-unit NPP accident occurs, (2) calculates realistic atmospheric dispersion of radionuclides under various weather conditions, and finally (3) supports off-site emergency plan optimization. It is recommended that this new method be applied to the risk assessment of multi-unit NPP accident. This new method drastically improves the accuracy of radionuclide concentrations at the locations adjacent to or very close to NPPs. This ML method has a great strength over the COM method when people live near nuclear site, since it provides accurate radionuclide concentrations or radiation doses.

Three-dimensional MXene (Ti3C2Tx) Film for Radionuclide Removal From Aqueous Solution

  • Jang, Jiseon;Lee, Dae Sung
    • Proceedings of the Korean Radioactive Waste Society Conference
    • /
    • 2018.11a
    • /
    • pp.379-379
    • /
    • 2018
  • MXenes are a new family of 2D transition metal carbide nanosheets analogous to graphene (Lv et al., 2017; Sun et al., 2018). Due to the easy availability, hydrophilic behavior, and tunable chemistry of MXenes, their use in applications for environmental pollution remediation such as heavy metal adsorption has recently been explored (Li et al., 2017). In this study, three-dimensional (3D) MXene ($Ti_3C_2T_x$) films with high adsorption capacity, good mechanical strength, and high selectivity for specific radionuclide from aquose solution were successfully fabricated by a polymeric precursor method using vacuum-assisted filtration. The highest removal efficiency on the films was 99.54%, 95.61%, and 82.79% for $Sr^{2+}$, $Co^{2+}$, and $Cs^+$, respectively, using a film dosage of 0.06 g/ L in the initial radionuclide solution (each radionuclide concentration = 1 mg/L and pH = 7.0). Especially, the adsorption process reached an equilibrium within 30 min. The expanded interlayer spacing of $Ti_3C_2T_x$ sheets in MXene films showed excellent radionuclide selectivity ($Cs^+$ and/or $Sr^{2+}/Co^{2+}$) (Simon, 2017). Besides, the MXene films was not only able to be easily retrieved from an aqueous solution by filtration after decontamination processes, but also to selectively separate desired target radionuclides in the solutions. Therefore, the newly developed MXene ($Ti_3C_2T_x$) films has a great potential for radionuclide removal from aqueous solution.

  • PDF

Analysis of ultra-low radionuclide concentrations in water samples with baromembrane method

  • Vasyanovich, Maxim;Ekidin, Aleksey;Trapeznikov, Alexander;Plataev, Anatoly
    • Nuclear Engineering and Technology
    • /
    • v.53 no.1
    • /
    • pp.253-257
    • /
    • 2021
  • This work demonstrates the use of baromembrane method based on reverse osmosis (RO) process. The method is realized on mobile complex, which allows to concentrate and determine ultra-low activity of radionuclides in water cooling ponds of Russian nuclear fuel cycle enterprises. The existence level of radionuclide background creates difficult conditions for identification the contribution of liquid discharges enterprise, as standard monitoring methods have a very high detection level for radionuclides. Traditional methods for determining the background radionuclides concentrations require the selection of at least 500 liters (l) of water, followed by their evaporation to form a dry residue. This procedure with RO membranes requires at least 5 days. It is possible to reduce the time and energy spent on evaporation of hundreds of water liters by pre-concentrating radionuclides in a smaller sample volume with baromembrane method. This approach allows preliminary concentration of water samples from 500 l volume till 20 l volume during several hours. This approach is universal for the concentration of dissolved salts of any heavy metals, other organic compounds and allows the preparation of water countable samples in much shorter time compared to the traditional evaporation method.

Effect of the Repository Configuration on Radionuclide Transport with the Multi-compartment Model for the LILW Repository Performance

  • Park, Jin-Beak;Park, Joo-Wan;Kim, Chang-Lak;Joonhong Ahn;Daisuke Kawasaki
    • Proceedings of the Korean Radioactive Waste Society Conference
    • /
    • 2004.06a
    • /
    • pp.228-228
    • /
    • 2004
  • Nuclear Environment Technology Institute (KHNP-NETEC) developed the conceptual design of the low and intermediate-level radioactive waste (LILW) repository. Among many engineering challenges, it is of particular importance to find out an optimum arrangement of near-surface disposal vaults in the repository area to minimize the radionuclide flux and concentration at the interface between the geo-sphere and bio-sphere. (omitted)

  • PDF

AN ANALYSIS OF THE EFFECT OF HYDRAULIC PARAMETERS ON RADIONUCLIDE MIGRATION IN AN UNSATURATED ZONE

  • Kim, Gye-Nam;Moon, Jei-Kwon;Lee, Kune-Woo
    • Nuclear Engineering and Technology
    • /
    • v.42 no.5
    • /
    • pp.562-567
    • /
    • 2010
  • A One-Dimensional Water Flow and Contaminant Transport in Unsaturated Zone (FTUNS) code has been developed in order to interpret radionuclide migration in an unsaturated zone. The pore-size distribution index (n) and the inverse of the air-entry value ($\alpha$) for an unsaturated zone were measured by KS M ISO 11275 method. The hydraulic parameters of the unsaturated soil are investigated by using soil from around a nuclear facility in Korea. The effect of hydraulic parameters on radionuclide migration in an unsaturated zone has been analyzed. The higher the value of the n-factor, the more the cobalt concentration was condensed. The larger the value of $\alpha$-factor, the faster the migration of cobalt was and the more aggregative the cobalt concentration was. Also, it was found that an effect on contaminant migration due to the pore-size distribution index (n) and the inverse of the air-entry value ($\alpha$) was minute. Meanwhile, migrations of cobalt and cesium are in inverse proportion to the Freundich isotherm coefficient. That is to say, the migration velocity of cobalt was about 8.35 times that of cesium. It was conclusively demonstrated that the Freundich isotherm coefficient was the most important factor for contaminant migration.

Distribution and characteristics of radioactivity$(^{232}Th,\;^{226}Ra,\;^{40}K,\;^{137}Cs\;and\;^{90}Sr)$ and radiation in Korea

  • Yun, Ju-Yong;Choi, Seok-Won;Kim, Chang-Kyu;Moon, Jong-Yi;Rho, Byung-Hwan
    • Journal of Radiation Protection and Research
    • /
    • v.30 no.4
    • /
    • pp.167-174
    • /
    • 2005
  • The concentrations of natural and artificial radionuclides in soil and gamma ray dose rate in air at 233 locations in Korea have been determined. The national mean concentrations of $^{232}Th,\;^{226}Ra,\;^{40}K,\;^{137}Cs\;and\;^{90}Sr$ in soil were $60{\pm}31,\;33{\pm}14,\;673{\pm}238,\;35{\pm}9.3\;and\;5.0{\pm}3.4\;Bq\;kg^{-1}$, respectively. The mean gamma-ray dose rate at 1 m above the ground was $7918\;nGy\;h^{-1}$. $^{137}Cs$ concentration had highly significant correlation with organic matter content and cation exchange capacity. $^{90}Sr$ concentration had slightly coherent with pH. The results have been compared with other global radioactivity and radiation measurements.

Statistical Approach for Derivation of Quantitative Acceptance Criteria for Radioactive Wastes to Near Surface Disposal Facility

  • Park Jin Beak;Park Joo Wan;Lee Eun Yong;Kim Chang Lak
    • Nuclear Engineering and Technology
    • /
    • v.35 no.5
    • /
    • pp.387-398
    • /
    • 2003
  • For reference human intrusion scenarios constructed in previous study, a probabilistic safety assessment to derive the radionuclide concentration limits for the low- and intermediate- level radioactive waste disposal facility is conducted. Statistical approach by the Latin Hypercube Sampling method is introduced and new assumptions about the disposal facility system are examined and discussed. In our previous study of deterministic approach, the post construction scenarios appeared as most limiting scenario to derive the radionuclide concentration limits. Whereas, in this statistical approach, the post drilling and the post construction scenarios are mutually competing for the scenario selection according to which radionuclides are more important in safety assessment context. Introduction of new assumption shows that the post drilling scenario can play an important role as the limiting scenario instead of the post-construction scenario. When we compare the concentration limits between the previous and this study, concentrations of radionuclides such as Nb-94, Cs-137 and alpha-emitting radionuclides show elevated values than the case of the previous study. Remaining radionuclides such as Sr-90, Tc-99 I-129, Ni-59 and Ni-63 show lower values than the case of the previous study.

Statistical Approach for Determination of Compliance with Clearance Criteria Based upon Types of Radionuclide Distributions in a Very Low-Level Radioactive Waste (극저준위 방사성폐기물의 방사성핵종 분포유형에 기초하여 자체처분기준 만족여부를 판단하기 위한 통계학적 접근방법)

  • Cheong, Jae-Hak
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.8 no.2
    • /
    • pp.123-133
    • /
    • 2010
  • A statistical evaluation methodology was developed to determine the compliance of candidate waste stream with clearance criteria based upon distribution of radionuclide in a waste stream at a certain confidence level. For the cases where any information on the radionuclide distribution is not available, the relation between arithmetic mean of radioactivity concentration and its acceptable maximum standard deviation was demonstrated by applying widely-known Markov Inequality and One-side Chebyshev Inequality. The relations between arithmetic mean and its acceptable maximum standard deviation were newly derived for normally or lognormally distributed radionuclide in a waste stream, using probability density function, cumulative density function, and other statistical relations. The evaluation methodology was tested for a representative case at 95% of confidence level and 100 Bq/g of clearance level of radioactivity concentration, and then the acceptable range of standard deviation at a given arithmetic mean was quantitatively shown and compared, by varying the type of radionuclide distribution. Furthermore, it was statistically demonstrated that the allowable range of clearance can be expanded, even at the same confidence level, if information on the radionuclide distribution is available.

A Method of Estimating Radionuclide Accumulation in Coolant Purification System (원자력발전소 냉각수 정화계통의 핵종누적량 예측기법)

  • Whang, Joo-Ho;Lee, Jae-Min
    • Journal of Radiation Protection and Research
    • /
    • v.22 no.3
    • /
    • pp.183-193
    • /
    • 1997
  • The amount and kinds of radionuclide contained in waste volume should be known to prepare for occupational exposure management, perform safety assessment and finally to license a repository. Although the volume of filters and resins are small, activities of them comprise most of the radioactivity that made during power generation. This study aims at developing a method of estimating the radionuclide accumulation at the filters and resins of coolant systems. In this study, accumulated amount of radionuclides is estimated by a computer program which makes use of instantaneous decontamination factor, DF, instead of average DF. A FORTRAN program was developed for the estimation. Data from in-plant source-term measurements at Rancho-Seco nuclear power plant in the United States are employed for verification of the estimating method. And experimental data are employed, too. The instantaneous-DF-method showed smaller error than the average-DF-method. Accumulated amount of radionuclides can be calculated with only the DF and the radionuclide concentration, which are measured periodically according to the operating guide. However, especially, when the operating condition of nuclear power plant changes rapidly, the measuring term of DF and radionuclide should be shortened to ensure the accurate estimation.

  • PDF

Estimation of natural radionuclide and exhalation rates of environmental radioactive pollutants from the soil of northern India

  • Devi, Vandana;Chauhan, Rishi Pal
    • Nuclear Engineering and Technology
    • /
    • v.52 no.6
    • /
    • pp.1289-1296
    • /
    • 2020
  • The estimation of radioactivity level is vital for population health risk assessment and geological point of view and can be evaluated as rate of exhalation and source concentration (226Ra, 232Th and 40K). The present study deals with the soil samples for investigation of radionuclides content and exhalation rates of radon -thoron gas from different sites in northern Haryana, India. Absorbed dose and associated index estimated in the present study are the measures of environmental radioactivity to inhalation dose. Effective doses received by different tissues and organs by considering different occupancy and conditions are also measured. Exhalation rates of radon and thoron are measured with active scintillation monitors based on alpha spectroscopy namely scintillation radon (SRM) and thoron (STM) monitors respectively. Sample height was optimized before measurement of thoron exhalation rate using STM. Average values of radon and thoron exhalation are found 16.6 ± 0.7 mBqkg-1h-1 and 132.1 ± 2.6 mBqm-2s-1 respectively. Also, a simple approach was also adopted, to evaluate the thoron exhalation which accomplished a lot of challenges, the results are compared with the data obtained experimentally. The study is useful in the nationwide mapping of radon and thoron exhalation rates for understanding the environmental radioactivity status.