• Title/Summary/Keyword: Radiometric correction coefficients

Search Result 5, Processing Time 0.022 seconds

PROTOTYPE ALGORITHM OF RADIOMETRIC CALIBRATION FOR IR CHANNELS ON GOES-12

  • Chang Ki-Ho;Oh Tae-Hyung;Ahn Myung-Hwan
    • Proceedings of the KSRS Conference
    • /
    • 2005.10a
    • /
    • pp.691-693
    • /
    • 2005
  • The prototype of the radiometric calibration algorithm, including the correction of scan mirror's angle, has been developed for the stationary meteorological sensor, firstly in Korea. We use this system on GOES-12 to evaluate two coefficients, slope and intercept. The evaluated coefficients show good agreement with the NESDIS's results for the five-case data. The calculated coefficients have been applied to the conversion from the measured counts to the radiance and the converting methods according to the scanning are investigated to enhance the radiometric accuracy.

  • PDF

Calculation of correction coefficients for the RedEdge-MX multispectral camera through intercalibration with a hyperspectral sensor (초분광센서와의 상호교정을 통한 RedEdge-MX 다분광 카메라의 보정계수 산출)

  • Baek, Seungil;Koh, Sooyoon;Kim, Wonkook
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.38 no.6
    • /
    • pp.707-716
    • /
    • 2020
  • Spectroradiometers have recently been drawing great attention in earth observing communities for its capability for obtaining target's quantitative properties. In particular, light-weighted multispectral cameras are gaining popularity in many field domains, as being utilized on UAV's. Despite the importance of the radiometric accuracy, studies are scarce on the performance of the inexpensive multispectral camera sensors that have various applications in agricultural, vegetation, and water quality analysis. This study conducted assessment of radiometric accuracy for MicaSense RedEdge-MX multispectral camera, by comparing the radiometric data with an independent hyperspectral sensor having NIST-traceable calibration quality. The comaprison showed that radiance from RedEdge-MX is lower than that of TriOS RAMSES by 5 to 16% depending on the bands, and the irradiance from RedEdge-MX is also lower than RAMSES by 1~20%. The correction coefficients for RedEdge-MX alculated through the 1-st and the 3-rd order regression analysis were presented as a result of the study.

Atmospheric Correction Problems with Multi-Temporal High Spatial Resolution Images from Different Satellite Sensors

  • Lee, Hwa-Seon;Lee, Kyu-Sung
    • Korean Journal of Remote Sensing
    • /
    • v.31 no.4
    • /
    • pp.321-330
    • /
    • 2015
  • Atmospheric correction is an essential part in time-series analysis on biophysical parameters of surface features. In this study, we tried to examine possible problems in atmospheric correction of multitemporal High Spatial Resolution (HSR) images obtained from two different sensor systems. Three KOMPSAT-2 and two IKONOS-2 multispectral images were used. Three atmospheric correction methods were applied to derive surface reflectance: (1) Radiative Transfer (RT) - based absolute atmospheric correction method, (2) the Dark Object Subtraction (DOS) method, and (3) the Cosine Of the Uun zeniTh angle (COST) method. Atmospheric correction results were evaluated by comparing spectral reflectance values extracted from invariant targets and vegetation cover types. In overall, multi-temporal reflectance from five images obtained from January to December did not show consistent pattern in invariant targets and did not follow a typical profile of vegetation growth in forests and rice field. The multi-temporal reflectance values were different by sensor type and atmospheric correction methods. The inconsistent atmospheric correction results from these multi-temporal HSR images may be explained by several factors including unstable radiometric calibration coefficients for each sensor and wide range of sun and sensor geometry with the off-nadir viewing HSR images.

Investigation of NESDIS's Calibration Algorithm of the Imagers for IR Channels on GOES-12

  • Chang, Ki-Ho;Oh, Tae-Hyung;Ahn, Myung-Hwan;Cho, Nam-Seo;Oh, Sung-Nam
    • Korean Journal of Remote Sensing
    • /
    • v.23 no.1
    • /
    • pp.55-58
    • /
    • 2007
  • The prototype radiometric calibration algorithm of the imagers for IR channels has been developed according to the Weinreb's method. Applying the algorithm to the GOES-12 count data, we have shown that the calibration coefficients (slope and intercept) evaluated by the algorithm gives good agreement with the NESDIS's ones, and that the scanning error due to the scan mirror emissivity and stripe error are almost eliminated by the East/West angle dependent scan-mirror correction and the respective calculation of intercept for each North/South scan line, respectively.

Vicarious Radiometric Calibration of the Ground-based Hyperspectral Camera Image (지상 초분광카메라 영상의 복사보정)

  • Shin, Jung-Il;Maghsoudi, Yasser;Kim, Sun-Hwa;Kang, Sung-Jin;Lee, Kyu-Sung
    • Korean Journal of Remote Sensing
    • /
    • v.24 no.2
    • /
    • pp.213-222
    • /
    • 2008
  • Although hyperspectral sensing data have shown great potential to derive various surface information that is not usually available from conventional multispectral image, the acquisition of proper hyperspectral image data are often limited. To use ground-based hyperspectral camera image for remote sensing studies, radiometric calibration should be prerequisite. The objective of this study is to develop radiometric calibration procedure to convert image digital number (DN) value to surface reflectance for the 120 bands ground-based hyperspectral camera. Hyperspectral image and spectral measurements were simultaneously obtained from the experimental target that includes 22 different surface materials of diverse spectral characteristics at wavelength range between 400 to 900 nm. Calibration coefficients to convert image DN value to at-sensor radiance were initially derived from the regression equations between the sample image and spectral measurements using ASD spectroradiometer. Assuming that there is no atmospheric effects when the image acquisition and spectral measurements were made at very close distance in ground, we were also able to derive calibration coefficients that directly transform DN value to surface reflectance. However, these coefficients for deriving reflectance values should not be applied when the camera is used for aerial image that contains significant effect from atmosphere and further atmospheric correction procedure is required in such case.