• Title/Summary/Keyword: Radiometric accuracy

Search Result 62, Processing Time 0.023 seconds

EXAMINATION OF SPATIAL INTEGRATION METHOD FOR EXTRACTING THE RCS OF A CALIBRATION TARGET FROM SAR IMAGES

  • Na, Jae-Ho;Oh, Yi-Sok
    • Proceedings of the KSRS Conference
    • /
    • 2007.10a
    • /
    • pp.254-257
    • /
    • 2007
  • This paper presents an examination of the spatial integration method for extracting the RCS of a trihedral corner reflector from SAR images for SAR external calibration. An exact external radiometric calibration technique is required for extracting an exact calibration constant. Therefore, we examine the accuracy of the spatial integration method, which is commonly used for the SAR external radiometric calibration. At first, an SAR image for a trihedral corner reflector is simulated with a high-resolution SAR impulse response with a known theoretical RCS of the reflector, and a background clutter image for the high resolution SAR system is also generated. Then, a SAR image in a high resolution is generated for a trihedral comer reflector located on a background clutter by superposition of the two SAR images. The radar cross section of a trihedral corner reflector in the SAR image is retrieved by integrating the radar signals of the pixels adjacent to the reflector for various size of the integration area. By comparison of the measured RCS by the integration method and the theoretical RCS of the reflector, the effect of the size of the integration area on the extraction of the calibration constant is examined.

  • PDF

An Implementation of the OTB Extension to Produce RapidEye Surface Reflectance and Its Accuracy Validation Experiment (RapidEye 영상정보의 지표반사도 생성을 위한 OTB Extension 개발과 정확도 검증 실험)

  • Kim, Kwangseob;Lee, Kiwon
    • Korean Journal of Remote Sensing
    • /
    • v.38 no.5_1
    • /
    • pp.485-496
    • /
    • 2022
  • This study is for the software implementation to generate atmospheric and surface reflectance products from RapidEye satellite imagery. The software is an extension based on Orfeo Toolbox (OTB) and an open-source remote sensing software including calibration modules which use an absolute atmospheric correction algorithm. In order to verify the performance of the program, the accuracy of the product was validated by a test image on the Radiometric Calibration Network (RadCalNet) site. In addition, the accuracy of the surface reflectance product generated from the KOMPSAT-3A image, the surface reflectance of Landsat Analysis Ready Data (ARD) of the same site, and near acquisition date were compared with RapidEye-based one. At the same time, a comparative study was carried out with the processing results using QUick Atmospheric Correction (QUAC) and Fast Line-of-sight Atmospheric Analysis of Spectral Hypercubes (FLAASH) tool supported by a commercial tool for the same image. Similar to the KOMPSAT-3A-based surface reflectance product, the results obtained from RapidEye Extension showed accuracy of agreement level within 5%, compared with RadCalNet data. They also showed better accuracy in all band images than the results using QUAC or FLAASH tool. As the importance of the Red-Edge band in agriculture, forests, and the environment applications is being emphasized, it is expected that the utilization of the surface reflectance products of RapidEye images produced using this program will also increase.

A Study on Object Based Image Analysis Methods for Land Use and Land Cover Classification in Agricultural Areas (변화지역 탐지를 위한 시계열 KOMPSAT-2 다중분광 영상의 MAD 기반 상대복사 보정에 관한 연구)

  • Yeon, Jong-Min;Kim, Hyun-Ok;Yoon, Bo-Yeol
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.15 no.3
    • /
    • pp.66-80
    • /
    • 2012
  • It is necessary to normalize spectral image values derived from multi-temporal satellite data to a common scale in order to apply remote sensing methods for change detection, disaster mapping, crop monitoring and etc. There are two main approaches: absolute radiometric normalization and relative radiometric normalization. This study focuses on the multi-temporal satellite image processing by the use of relative radiometric normalization. Three scenes of KOMPSAT-2 imagery were processed using the Multivariate Alteration Detection(MAD) method, which has a particular advantage of selecting PIFs(Pseudo Invariant Features) automatically by canonical correlation analysis. The scenes were then applied to detect disaster areas over Sendai, Japan, which was hit by a tsunami on 11 March 2011. The case study showed that the automatic extraction of changed areas after the tsunami using relatively normalized satellite data via the MAD method was done within a high accuracy level. In addition, the relative normalization of multi-temporal satellite imagery produced better results to rapidly map disaster-affected areas with an increased confidence level.

MONITORING OF MOUNTAINOUS AREAS USING SIMULATED IMAGES TO KOMPSAT-II

  • Chang Eun-Mi;Shin Soo-Hyun
    • Proceedings of the KSRS Conference
    • /
    • 2005.10a
    • /
    • pp.653-655
    • /
    • 2005
  • More than 70 percent of terrestrial territory of Korea is mountainous areas where degradation becomes serious year by year due to illegal tombs, expanding golf courses and stone mine development. We elaborate the potential usage of high resolution image for the monitoring of the phenomena. We made the classification of tombs and the statistical radiometric characteristics of graves were identified from this project. The graves could be classified to 4 groups from the field survey. As compared with grouping data after clustering and discriminant analysis, the two results coincided with each other. Object-oriented classification algorithm for feature extraction was theoretically researched in this project. And we did a pilot project, which was performed with mixed methods. That is, the conventional methods such as unsupervised and supervised classification were mixed up with the new method for feature extraction, object-oriented classification method. This methodology showed about $60\%$ classification accuracy for extracting tombs from satellite imagery. The extraction of tombs' geographical coordinates and graves themselves from satellite image was performed in this project. The stone mines and golf courses are extracted by NDVI and GVI. The accuracy of classification was around 89 percent. The location accuracy showed extraction of tombs from one-meter resolution image is cheaper and quicker way than GPS method. Finally we interviewed local government officers and made analyses on the current situation of mountainous area management and potential usage of KOMPSAT-II images. Based on the requirement analysis, we developed software, which is to management and monitoring system for mountainous area for local government.

  • PDF

Classifying Forest Species Using Hyperspectral Data in Balah Forest Reserve, Kelantan, Peninsular Malaysia

  • Zain, Ruhasmizan Mat;Ismail, Mohd Hasmadi;Zaki, Pakhriazad Hassan
    • Journal of Forest and Environmental Science
    • /
    • v.29 no.2
    • /
    • pp.131-137
    • /
    • 2013
  • This study attempts to classify forest species using hyperspectral data for supporting resources management. The primary dataset used was AISA sensor. The sensor was mounted onboard the NOMAD GAF-27 aircraft at 2,000 m altitude creating a 2 m spatial resolution on the ground. Pre-processing was carried out with CALIGEO software, which automatically corrects for both geometric and radiometric distortions of the raw image data. The radiance data set was then converted to at-sensor reflectance derived from the FODIS sensor. Spectral Angle Mapper (SAM) technique was used for image classification. The spectra libraries for tree species were established after confirming the appropriate match between field spectra and pixel spectra. Results showed that the highest spectral signature in NIR range were Kembang Semangkok (Scaphium macropodum), followed by Meranti Sarang Punai (Shorea parvifolia) and Chengal (Neobalanocarpus hemii). Meanwhile, the lowest spectral response were Kasai (Pometia pinnata), Kelat (Eugenia spp.) and Merawan (Hopea beccariana), respectively. The overall accuracy obtained was 79%. Although the accuracy of SAM techniques is below the expectation level, SAM classifier was able to classify tropical tree species. In future it is believe that the most effective way of ground data collection is to use the ground object that has the strongest response to sensor for more significant tree signatures.

Comparative Analysis of Target Detection Algorithms in Hyperspectral Image (초분광영상에 대한 표적탐지 알고리즘의 적용성 분석)

  • Shin, Jung-Il;Lee, Kyu-Sung
    • Korean Journal of Remote Sensing
    • /
    • v.28 no.4
    • /
    • pp.369-392
    • /
    • 2012
  • Recently, many target detection algorithms were developed for hyperspectral image. However, almost of these studies focused only accuracy from 1 or 2 data sets to validate and compare the algorithms although they give limited information to users. This study aimed to compare usability of target detection algorithms with various parameters. Five parameters were proposed to compare sensitivity in aspect of detection accuracy which are related with radiometric and spectral characteristics of target, background and image. Six target detection algorithms were compared in aspect of accuracy and efficiency (processing time) by variation of the parameters and image size, respectively. The results shown different usability of each algorithm by each parameter in aspect of accuracy. Second order statistics based algorithms needed relatively long processing time. Integrated usabilities of accuracy and efficiency were various by characteristics of target, background and image. Consequently, users would consider appropriate target detection algorithms by characteristics of data and purpose of detection.

Change Detection of Urban Development over Large Area using KOMPSAT Optical Imagery (KOMPSAT 광학영상을 이용한 광범위지역의 도시개발 변화탐지)

  • Han, Youkyung;Kim, Taeheon;Han, Soohee;Song, Jeongheon
    • Korean Journal of Remote Sensing
    • /
    • v.33 no.6_3
    • /
    • pp.1223-1232
    • /
    • 2017
  • This paper presents an approach to detect changes caused by urban development over a large area using KOMPSAT optical images. In order to minimize the radiometric dissimilarities between the images acquired at different times, we apply the grid-based rough radiometric correction as a preprocessing to detect changes in a large area. To improve the accuracy of the change detection results for urban development, we mask-out non-interest areas such as water and forest regions by the use of land-cover map provided by the Ministry of Environment. The Change Vector Analysis(CVA) technique is applied to detect changes caused by urban development. To confirm the effectiveness of the proposed approach, a total of three study sites from Sejong City is constructed by combining KOMPSAT-2 images acquired on May 2007 and May 2016 and a KOMPSAT-3 image acquired on March 2014. As a result of the change detection accuracy evaluation for the study site generated from the KOMPSAT-2 image acquired on May 2007 and the KOMPSAT-3 image acquired on March 2014, the overall accuracy of change detection was about 91.00%. It is demonstrated that the proposed method is able to effectively detect urban development changes in a large area.

A Statistical Analysis of JERS L-band SAR Backscatter and Coherence Data for Forest Type Discrimination

  • Zhu Cheng;Myeong Soo-Jeong
    • Korean Journal of Remote Sensing
    • /
    • v.22 no.1
    • /
    • pp.25-40
    • /
    • 2006
  • Synthetic aperture radar (SAR) from satellites provides the opportunity to regularly incorporate microwave information into forest classification. Radar backscatter can improve classification accuracy, and SAR interferometry could provide improved thematic information through the use of coherence. This research examined the potential of using multi-temporal JERS-l SAR (L band) backscatter information and interferometry in distinguishing forest classes of mountainous areas in the Northeastern U.S. for future forest mapping and monitoring. Raw image data from a pair of images were processed to produce coherence and backscatter data. To improve the geometric characteristics of both the coherence and the backscatter images, this study used the interferometric techniques. It was necessary to radiometrically correct radar backscatter to account for the effect of topography. This study developed a simplified method of radiometric correction for SAR imagery over the hilly terrain, and compared the forest-type discriminatory powers of the radar backscatter, the multi-temporal backscatter, the coherence, and the backscatter combined with the coherence. Statistical analysis showed that the method of radiometric correction has a substantial potential in separating forest types, and the coherence produced from an interferometric pair of images also showed a potential for distinguishing forest classes even though heavily forested conditions and long time separation of the images had limitations in the ability to get a high quality coherence. The method of combining the backscatter images from two different dates and the coherence in a multivariate approach in identifying forest types showed some potential. However, multi-temporal analysis of the backscatter was inconclusive because leaves were not the primary scatterers of a forest canopy at the L-band wavelengths. Further research in forest classification is suggested using diverse band width SAR imagery and fusing with other imagery source.

The Error of the Method of Angular Sections of Microwave Sounding of Natural Environments in the System of Geoecological Monitoring

  • Fedoseeva, E.V.;Kuzichkin, O. R.
    • International Journal of Computer Science & Network Security
    • /
    • v.21 no.6
    • /
    • pp.47-53
    • /
    • 2021
  • The article deals with the problems of application of microwave methods in systems of geoecological monitoring of natural environments and resources of the agro-industrial complex. It is noted that the methods of microwave radiometry make it possible, by the power of the measured intrinsic radio-thermal radiation of the atmosphere, when solving inverse problems using empirical and semi-empirical models, to determine such parameters of the atmosphere as thermodynamic temperature, humidity, water content, moisture content, precipitation intensity, and the presence of different fractions of clouds.In addition to assessing the meteorological parameters of the atmosphere and the geophysical parameters of the underlying surface based on the data of microwave radiometric measurements, it is possible to promptly detect and study pollution of both the atmosphere and the earth's surface. A technique has been developed for the analysis of sources of measurement error and their numerical evaluation, because they have a significant effect on the accuracy of solving inverse problems of reconstructing the values of the physical parameters of the probed media.To analyze the degree of influence of the limited spatial selectivity of the antenna of the microwave radiometric system on the measurement error, we calculated the relative measurement error of the ratio of radio brightness contrasts in two angular directions. It has been determined that in the system of geoecological monitoring of natural environments, the effect of background noise is maximal with small changes in the radiobrightness temperature during angular scanning and high sensitivity of the receiving equipment.

Brightness Value Comparison Between KOMPSAT-2 Images with IKONOS/GEOEYE-1 Images (KOMPSAT-2 영상과 IKONOS/GEOEYE-1 영상의 밝기값 상호비교)

  • Kim, Hye-On;Kim, Tae-Jung;Lee, Hyuk
    • Korean Journal of Remote Sensing
    • /
    • v.28 no.2
    • /
    • pp.181-189
    • /
    • 2012
  • Recently, interest in potential for estimating water quality using high resolution satellite images is increasing. However, low SNR(Signal to Noise Ratio) over inland water and radiometric errors such as non-linearity of brightness value of high resolution satellite images often lead to accuracy degradation in water quality estimation. Therefore radiometric correction should be carried out to estimate water quality for high resolution satellite images. For KOMPSAT-2 images parameters for brightness value-radiance conversion are not available and precise radiometric correction is difficult. To exploit KOMPSAT-2 images for water quality monitoring, it is necessary to investigate non-linearity of brightness value and noise over inland water. In this paper, we performed brightness value comparison between KOMPSAT-2 images and IKONOS/GeoEye-1, which are known to show the linearity. We used the images obtained over the same area and on the same date for comparison. As a result, we showed that although KOMPSAT-2 images are more noisy;the trend of brightness value and pattern of noise are almost similar to reference images. The results showed that appropriate target area to minimize the impact of noise was $5{\times}5$. Non-linearity of brightness value between KOMPSAT-2 and reference images was not observed. Therefore we could conclude that KOMPSAT-2 may be used for estimation of water quality parameters such as concentration of chlorophyll.