복사 보정에 해당하는 NUC(Non-Uniformity Correction)은 MSC 각각의 픽셀들이 가지는 상이한 특성을 균일한 이미지를 얻기 위해 보정하는 작업으로서 KOMPSAT-2 검보정 작업 중 Video Processor 의 Electrical Gain/Offset 의 보정 과 더 불어 매 우 중요한 비중을 차지하는 과정이다. 본 논문에서는 KOMPSAT-2 의 Panchromatic 밴드의 raw image 를 이 용한 NUC 보정 작업 의 과정과 그 결과에 대해서 소개하고자 한다.
Jo, D.K.;Chun, I.S.;Jeon, M.S.;Kang, Y.H.;Auh, C.M.
Journal of the Korean Solar Energy Society
/
v.21
no.3
/
pp.25-32
/
2001
The major purpose of this paper is to develop an uncertainty estimate for the calibration of thermopile instruments used to measure solar radiation parameters. We briefly describe the solar radiation parameters most often measured, instrumentation, reference standards, and calibration techniques. The bulk of the paper describes elemental sources of error and their magnitude. We then apply a standard error analysis methodology to combine these elemental error estimates into a statement of total uncertainty for the instrument calibration factor. Our results allow one to evaluate the accuracy of a radiometric measurement using thermopile instrumentation in the light of the application, such as engineering test evaluation or for validation of theoretical models.
The Sonoran Desert, which is located in North America, has been frequently used for vicarious calibration of many optical sensors in satellites. Although the desert area has good conditions for vicarious calibration (e.g. high reflectance, little vegetation, large area, low precipitation), its adjacency to the sea and large variability in atmospheric water vapor are the disadvantages for vicarious calibration. For vicarious calibration using top-of-atmospheric (TOA) reflectance, the atmospheric variability brings about degraded precision in vicarious calibration results. In this paper, the location with the smallest radiometric variability in TOA reflectance is sought by using 12-year Landsat 5 data, and corrected the TOA reflectance for bidirectional reflectance distribution function (BRDF) which is another major source of variability in TOA reflectance. Experiments show that the mid-western part of the Sonoran Desert has the smallest variability collectively for visible and near-infrared bands, and the variability from the sunarget-sensor geometry can be reduced by the BRDF correction for the visible bands, but not sufficiently for the infrared bands.
Drone-mounted hyperspectral sensors (DHSs) have revolutionized remote sensing in agriculture by offering a cost-effective and flexible platform for high-resolution spectral data acquisition. Their ability to capture data at low altitudes minimizes atmospheric interference, enhancing their utility in agricultural monitoring and management. This study focused on addressing the challenges of radiometric and geometric distortions in preprocessing drone-acquired hyperspectral data. Radiometric correction, using the empirical line method (ELM) and spectral reference panels, effectively removed sensor noise and variations in solar irradiance, resulting in accurate surface reflectance values. Notably, the ELM correction improved reflectance for measured reference panels by 5-55%, resulting in a more uniform spectral profile across wavelengths, further validated by high correlations (0.97-0.99), despite minor deviations observed at specific wavelengths for some reflectors. Geometric correction, utilizing a rubber sheet transformation with ground control points, successfully rectified distortions caused by sensor orientation and flight path variations, ensuring accurate spatial representation within the image. The effectiveness of geometric correction was assessed using root mean square error(RMSE) analysis, revealing minimal errors in both east-west(0.00 to 0.081 m) and north-south directions(0.00 to 0.076 m).The overall position RMSE of 0.031 meters across 100 points demonstrates high geometric accuracy, exceeding industry standards. Additionally, image mosaicking was performed to create a comprehensive representation of the study area. These results demonstrate the effectiveness of the applied preprocessing techniques and highlight the potential of DHSs for precise crop health monitoring and management in smart agriculture. However, further research is needed to address challenges related to data dimensionality, sensor calibration, and reference data availability, as well as exploring alternative correction methods and evaluating their performance in diverse environmental conditions to enhance the robustness and applicability of hyperspectral data processing in agriculture.
Dual channel Radiometer for Earth and Atmospheric Monitoring (DREAM) is the main payload on Science and Technology SATellite-2 (STSAT-2) of Korea. DREAM is two-channel microwave radiometer with linear polarization, and operating at center frequencies of 23.8 GHz and 37 GHz. An equation for DREAM calibration is derived which accounts for losses and re-radiation in the microwave components of the radiometer due to physical temperature. This paper describes the radiometric calibration equation to get antenna temperature ($T_A$) from the measured output data. At lower altitude, the measured deep space temperature is contaminated by middle atmosphere and earth radiation. In this paper, we presented the detail mathematical formulation to find the altitude up to which cold source brightness temperature is not affected by earth and middle atmosphere radiation. The DREAMPFM data is used to calculate the performance parameters (linearity, sensitivity, dynamic range, and etc.) of the system.
International Journal of Aeronautical and Space Sciences
/
v.17
no.2
/
pp.253-259
/
2016
The typical method for performing an absolute radiometric calibration of a Synthetic Aperture Radar (SAR) System is to analyze its response, without interference, to a target with a known Radar Cross Section (RCS). To minimize interference, an error-free calibration site for a Corner Reflector (CR) is required on a wide and flat plain or on an area without disturbance sources (such as ground objects). However, in reality, due to expense and lack of availability for long periods, it is difficult to identify such a site. An alternative solution is the use of a Triangular Trihedral Corner Reflector (TTCR) site, with a surrounding protection wall consisting of berms and a hollow. It is possible in this scenario, to create the minimum criteria for an effectively error-free site involving a conventional object-tip reflection applied to all beams. Sidelobe interference by the berm is considered to be the major disturbance factor. Total interference, including an object-tip reflection and a sidelobe interference, is analyzed experimentally with SAR images. The results provide a new guideline for the minimum criteria of TTCR site design that require, at least, the removal of all ground objects within the fifth sidelobe.
Proceedings of the Korean Information Science Society Conference
/
2011.06b
/
pp.294-295
/
2011
본 논문에서는 스마트폰의 카메라와 플래시를 이용한 Shape from Shading 방법으로 3차원 형상 취득을 위한 카메라와 플래시의 보정 기법을 제시한다. 영상에서 관찰되는 화소 값은 카메라의 반응곡선에 의해 비선형적으로 표현되고 렌즈의 왜곡으로 인해 3차원 형상 복원에 오차를 발생 시킨다. 기하학적(geometric) 보정과 방사량(radiometric) 보정, 플래시 보정을 수행함으로써 3차원 형상 복원의 오차를 줄인다.
Proceedings of the Optical Society of Korea Conference
/
2000.02a
/
pp.198-199
/
2000
다목적 실용위성 (KOMPSAT) 1호기에 탑재되는 해양관측카메라 Ocean Scanning Multi-spectral Imager (OSMI)는 해양 결상계의 노화에 따른 성능 변화 감지 및 보정을 위해 태양광 보정을 궤도운영 중 수행한다. 태양광 보정의 구조 및 광학적 특성을 분석하고 OSMI 주요 관측파장대역별로 태양광 보정계의 출력신호량을 예측하였다. 이 분석은 OSMI 센서보정 계획 및 영상 품질 이해에 유용할 것이다. (중략)
Kim, Bu-Yo;Lee, Kyu-Tae;Zo, Il-Sung;Lee, Sang-Ho;Jung, Hyun-Seok;Rim, Se-Hun;Jang, Jeong-Pil
Asia-Pacific Journal of Atmospheric Sciences
/
v.54
no.4
/
pp.639-648
/
2018
The pyranometer for observing the solar radiation reaching the surface of the earth is manufactured by various companies around the world. The sensitivity of the pyranometer at the observatory is required to be properly controlled based on the reference value of the World Radiometric Center (WRC) and the observatory environment; otherwise, the observational data may be subject to a large error. Since the sensitivity of the pyranometer can be calibrated in an indoor or outdoor calibration, this study used a CSTMUSS-4000C Integrating Sphere by Labsphere Inc. (USA) to calibrate the sensitivity of CMP22 pyranometer by Kipp&Zonen Inc. (Netherlands). Consequently, the factory sensitivity of CMP22 was corrected from $8.68{\mu}V{\cdot}(Wm^{-2})^{-1}$ to $8.98{\mu}V{\cdot}(Wm^{-2})^{-1}$, and the result from the outdoor calibration according to the observatory environment was $8.90{\mu}V{\cdot}(Wm^{-2})^{-1}$. After the indoor calibration of the pyranometer sensitivity, the root mean square error (RMSE) of the observational data at the observatory on a clear day without clouds (July 13, 2017) was $7.11Wm^{-2}$ in comparison to the reference pyranometer. After the outdoor calibration of the pyranometer sensitivity based on these results, the RMSE of the observational data was $1.74Wm^{-2}$ on the same day. Periodic inspections are required because the decrease of sensitivity over time is inevitable in the pyranometer data produced at the observatory. The initial sensitivity after indoor calibration ($8.98{\mu}V{\cdot}(Wm^{-2})^{-1}$) is important, and the sensitivity after outdoor calibration ($8.90{\mu}V{\cdot}(Wm^{-2})^{-1})$ can be compared to the data at the Baseline Surface Radiation Network (BSRN) or can be used for various studies and daily applications.
정지궤도에서는 세계 최초의 해양관측위성으로 개발된 정지궤도 해양위성(GOCI, Geostationary Ocean Color Imager)은 통신해양기상위성(COMS, Communication, Ocean and Meterological Satellite)의 탑재체로서 2009년말 발사 예정이다. 정지궤도 해양위성의 복사보정은 센서의 전기적 특성에 의한 잡음을 제거하기 위한 암흑전류 교정(Dark Current Correction)을 먼저 수행한 다음, 주운영지상국인 해양위성센터(KOSC, Korea Ocean Satellite Center)에서 수신된 위성의 원시자료의 Digital Number(DN)를 실제 해양원격탐사에서 이용하는 물리량인 복사휘도(Radiance, $W/m^2/{\mu}m/sr$)로 변환하는 복사보정을 수행한다. 정확도 높은 복사보정을 수행하기 위해서는 기준광원의 복사휘도와 센서의 물리적 특성을 정확하게 알아야 한다. 정지궤도 해양위성 궤도상 복사보정(on-orbit radiometric calibration)에서는 태양이 기준광원이기 때문에, 기준 태양복사모델(Thuillier 2004 Solar Irradiance Model)에서 지구-태양간 거리 변화(1년 주기)를 보정한 태양의 방사도 (Irradiance)를 이용하고, 태양입사각에 대한 태양광 확산기의 감쇄 특성 변화를 고려하여 센서에 입력되는 복사휘도를 계산한다. 센서의 물리적 특성으로 인한 복사보정의 오차를 줄이기 위해 우주방사선 및 우주먼지(space debris)로 인해 위성 운용기간 중 그 특성이 저하되는 태양광 확산기(solar Diffuser)의 특성변화를 모니터링하기 위한 DAMD(Diffuser Aging Monitoring Device)를 이용한다. 정지궤도 해양위성 주관운영기관인 한국해양연구원의 해양위성센터에서는 정지궤도 해양위성 복사보정을 수행하기 위한 S/W를 통신해양기상위성 자료처리시스템 개발사업의 일환으로 개발하였으며, 관련 성능 시험을 수행하고 있다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.