• Title/Summary/Keyword: Radiometer Calibration

Search Result 31, Processing Time 0.02 seconds

Subcutaneous Temperature Estimation By Microwave Radiometry (Microwave Radiometry 원리를 이용한 생체 내부 온도 추정)

  • Kim, Kyeong-Seop;Lee, Jeong-Whan
    • Journal of Biomedical Engineering Research
    • /
    • v.27 no.6
    • /
    • pp.357-364
    • /
    • 2006
  • Microwave Radiometry is the spectral measurement of eleclromagnetic radiation at frequency bands in the microwave region. One particular application of Microwave Radiometry is for analyzing temperature difffrentials of inside of human body to detect and diagnose pathologic conditions in which the temperature differentials are related with the symptoms of certain diseases. To accomplish this aim, we propose a new calibration method for estimating subcutaneous temperature by Microwave Radiometer and we also suggest a tumor-imitator phantom structure for simulating heat diffusion propagated by tissues around tumors to evaluate the discernment of brighuless temperature difffrentials.

Noise Equivalent Differential Temperature of Passive FTIR Sensor System (수동형 퓨리에변환 적외선 분광기의 잡음등가온도지수)

  • Kang, Young-Il;Park, Byeong-Hwang;Choi, Myung-Jin;Hong, Dea-Sik;Choi, Soo;Kim, Dong-Hwan;Park, Do-Hyun
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.14 no.2
    • /
    • pp.161-166
    • /
    • 2011
  • The passive open-path Fourier-Transform-Infrared system was implemented for the toxic gas monitoring. Noise Equivalent Differential Temperature(NEDT) was investigated as a system performance evaluation figure and analyzed numerically with the designed parameters. Calculated NEDT was compared with the experimental value in the wavelength region of $700{\sim}1400cm^{-1}^$. The minimum detectable gas concentration was estimated from the obtained NEDT at the absorption wavelength of $SF_6$.

The Validation of Landsat TM Band Ratio Algorithm using In-water Optical Measurement (수중 광학측정을 이용한 Landsat TM 밴드비율 알고리듬 검증)

  • Jeong, Jong-Chul
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.4 no.1
    • /
    • pp.18-26
    • /
    • 2001
  • Landsat TM band ratio algorithms were made by in-water optical measurement data of each sampling points for water quality monitoring of coastal area using Landsat TM satellite data. The algorithm was derived from in-water optical reflectance data which was measuring by the PRR(profiling reflectance radiometer). And, in-water optical reflectance data were applied to Landsat TM bands. Relationship between in-water optical reflectance and pigments proposed by the ratio of TM band 1 and band 2 showed to as follows; $Y=3.8352{\times}(R(band\;1)/R(band\;2))^{-2.1978}$ ($R^2$=0.7069) and, relationship of the ratio of TM band 1 and band 3 as follows; $Y=23.288{\times}(R(band\;1)/R(band\;3))^{-1.5243}$ ($R^2$=0.8062). Calculated the upwelling radiance of water surface and radiance of TM showed the ratio of atmospheric effect. In the coastal area Rayleigh and Mie scattering of atmosphere is to make over 80% of normalized radiance of Landsat TM. In order to apply in-water algorithm obtained by PRR, we had to calculate the atmospheric effects at sampling site. And, the quantitative analysis of in-water components using Landsat TM data need the calibration of in-water algorithm and effective method of atmospheric correction.

  • PDF

A Study on the Estimation of the Sea Surface Temperature from AVHRR CH4 data of NOAA-9 (극궤도 기상위성 NOAA-9호의 AVHRR CH4 data로 부터 해수면온도 산출과정에 관한 연구)

  • 이희훈;서애숙
    • Korean Journal of Remote Sensing
    • /
    • v.3 no.1
    • /
    • pp.41-54
    • /
    • 1987
  • Accurate determination of Sea Surface Temperature (SST) is essential for ocean and climate studies. This paper estimated SST in the sea region around the Korea from the Advenced Very High Resolution Radiometer(AVHRR) channel 4 data on board NOAA-9 satellite. The processing procedure used to derive SSTs utilized: 1) Ascending node prediction of satellite orbit 2) Geometric correction 3) Radiometric calibration and radiance to temperature conversion look up table 4) Removing cloudy area. SST product results are displayed as colored video and hardcopy. In this processing, geometric correction is derived from equator crossing time, ascending time and subpoint coordinate information. Also, normalized response function of infrared 10.5-11.5$\mu\textrm{m}$ wavelength is used for temperature conversion. The SST derived from this processing is relatively similar to the measurements made by ship data, but because of water vapor attenuation SST from satellite are in general 2$^{\circ}$- $^{\circ}C$ lower than the ship data.

KSR-III 과학탑재 시스템 개발

  • Hwang, Seung-Hyun;Kim, Jhoon;Chun, Young-Doo;Kim, Yong-Ha;Jang, Min-Hwan
    • Aerospace Engineering and Technology
    • /
    • v.1 no.2
    • /
    • pp.83-90
    • /
    • 2002
  • This paper describes the development of scientific payload system onboard the KSR-III. The ozone detector(UVR), Langmuir electron probe(LEP), airglow photometer(AGP), and magnetometer(MAG) constitute this system. The purpose of the ozone detector is to measure the ozone density profile and the LEP measures the electron density and temperature in the ionosphere over the Korean Peninsula. The AGP detects airglow in the mesosphere over the Korean Peninsular. The MAG provides rocket attitude and the magnetic fluctuation information during the flight. With the developed payloads, the ground calibration tests and the environmental tests have been performed.

  • PDF

Determination of Precipitable Water Vapor from Combined GPS/GLONASS Measurements and its Accuracy Validation (GPS/GLONASS 통합관측자료를 이용한 가강수량 산출과 정확도 검증)

  • Sohn, Dong Hyo;Park, Kwan Dong;Kim, Yeon Hee
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.21 no.4
    • /
    • pp.95-100
    • /
    • 2013
  • Several observation equipments are being used for determination of the water vapor content and precipitable water vapor (PWV) because the water vapor is highly variable temporally and spatially. In this study, we used GNSS systems such as GPS and GLONASS in standalone and combined modes to compute PWV and validated their accuracy with respect to the results of other water-vapor monitoring systems. The other systems used were radiosonde and microwave radiometer, and the comparisons were convenient because all three systems were collocated at the test site. The differences of PWW were in the range of 0.6-3.4 mm in the mean sense, and their standard deviations were 1.0-3.8 mm. The relatively large difference of GNSS compared with the other two systems were believed to be caused by the fact that the GNSS antenna used in this study was the kind for which the international standard of phase center variations (PCV) calibration is not available. We expect better accuracy of PWV determination and improved availability of it through integrated data processing of GPS/GLONASS when an appropriate antenna with PCV correction model is used.

Analysis on Adequacy of the Satellite Soil Moisture Data (AMSR2, ASCAT, and ESACCI) in Korean Peninsula: With Classification of Freezing and Melting Periods (인공위성 기반 토양 수분 자료들(AMSR2, ASCAT, and ESACCI)의 한반도 적절성 분석: 동결과 융해 기간을 구분하여)

  • Baik, Jongjin;Cho, Seongkeun;Lee, Seulchan;Choi, Minha
    • Korean Journal of Remote Sensing
    • /
    • v.35 no.5_1
    • /
    • pp.625-636
    • /
    • 2019
  • Soil moisture is a representative factor that plays a key role in hydrological cycle. It is involved in the interaction between atmosphere and land surface, and is used in fields such as agriculture and water resources. Advanced Microwave Scanning Radiometer 2 (AMSR2), Advanced SCATterometer (ASCAT), and European Space Agency Climate Change Initiative (ESACCI) data were used to analyze the applicability and uncertainty of satellite soil moisture product in the Korean peninsula. Cumulative distribution function (CDF) matching and triple collocation (TC) analysis were carried out to investigate uncertainty and correction of satellite soil moisture data. Comparisons of pre-calibration satellite soil moisture data with the Automated Agriculture Observing System (AAOS) indicated that ESACCI and ASCAT data reflect the trend of AAOS well. On the other hand, AMSR2 satellite data showed overestimated values during the freezing period. Correction of satellite soil moisture data using CDF matching improved the error and correlation compared to those before correction. Finally, uncertainty analysis of soil moisture was carried out using TC method. Clearly, the uncertainty of the satellite soil moisture, corrected by CDF matching, was diminished in both freezing and thawing periods. Overall, it is expected that using ASCAT and ESACCI rather than AMSR2 soil moisture data will give more accurate soil moisture information when correction is performed on the Korean peninsula.

Correction of Lunar Irradiation Effect and Change Detection Using Suomi-NPP Data (VIIRS DNB 영상의 달빛 영향 보정 및 변화 탐지)

  • Lee, Boram;Lee, Yoon-Kyung;Kim, Donghan;Kim, Sang-Wan
    • Korean Journal of Remote Sensing
    • /
    • v.35 no.2
    • /
    • pp.265-278
    • /
    • 2019
  • Visible Infrared Imaging Radiometer Suite (VIIRS) Day/Night Band (DNB) data help to enable rapid emergency responses through detection of the artificial and natural disasters occurring at night. The DNB data without correction of lunar irradiance effect distributed by Korea Ocean Science Center (KOSC) has advantage for rapid change detection because of direct receiving. In this study, radiance differences according to the phase of the moon was analyzed for urban and mountain areas in Korean Peninsula using the DNB data directly receiving to KOSC. Lunar irradiance correction algorithm was proposed for the change detection. Relative correction was performed by regression analysis between the selected pixels considering the land cover classification in the reference DNB image during the new moon and the input DNB image. As a result of daily difference image analysis, the brightness value change in urban area and mountain area was ${\pm}30$ radiance and below ${\pm}1$ radiance respectively. The object based change detection was performed after the extraction of the main object of interest based on the average image of time series data in order to reduce the matching and geometric error between DNB images. The changes in brightness occurring in mountainous areas were effectively detected after the calibration of lunar irradiance effect, and it showed that the developed technology could be used for real time change detection.

On-orbit test simulation for field angle dependent response measurement of the Amon-Ra energy channel instrument

  • Seong, Sehyun;Kim, Sug-Whan;Ryu, Dongok;Hong, Jinsuk;Lockwood, Mike
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.37 no.2
    • /
    • pp.211.1-211.1
    • /
    • 2012
  • The on-orbit test simulation for predicting the instrument directional responsivity was conducted by the Monte Carlo based integrated ray tracing (IRT) computation technique and analytic flux-to-signal conversion algorithms. For the on-orbit test simulation, the Sun model consists of the Lambertian scattering sphere and emitting spheroid rays, the Amon-Ra instrument is a two-channel including a broadband scanning radiometer (energy channel) and an imager with ${\pm}2^{\circ}$ FOV (visible channel). The solar radiation produced by the Sun model is directed to the instrument viewing port and traced through the dual channel optical train. The instrument model is rotated on its rotation axis and this gives a slow scan of the Sun model over the full field of view. The direction of the incident lights are fed with scanned images obtained from the visible channel instrument. The instrument responsivity was computed by the ratio of the incident radiation input to the instrument output. In the radiometric simulation, especially, measured BRDF of the 3D CPC was used for scattering effects on radiometry. With diamond turned 3D CPC inner surface, the anisotropic surface scattering model from the measured data was applied to ray tracing computation. The technical details of the on-orbit test simulation are presented together with field-of-view calibration plan.

  • PDF

Vegetation Cover Type Mapping Over The Korean Peninsula Using Multitemporal AVHRR Data (시계열(時系列) AVHRR 위성자료(衛星資料)를 이용한 한반도 식생분포(植生分布) 구분(區分))

  • Lee, Kyu-Sung
    • Journal of Korean Society of Forest Science
    • /
    • v.83 no.4
    • /
    • pp.441-449
    • /
    • 1994
  • The two reflective channels(red and near infrared spectrum) of advanced very high resolution radiometer(AVHRR) data were used to classify primary vegetation cover types in the Korean Peninsula. From the NOAA-11 satellite data archive of 1991, 27 daytime scenes of relatively minimum cloud coverage were obtained. After the initial radiometric calibration, normalized difference vegetation index(NDVI) was calculated for each of the 27 data sets. Four or five daily NDVI data were then overlaid for each of the six months starting from February to November and the maximum value of NDVI was retained for every pixel location to make a monthly composite. The six bands of monthly NDVI composite were nearly cloud free and used for the computer classification of vegetation cover. Based on the temporal signatures of different vegetation cover types, which were generated by an unsupervised block clustering algorithm, every pixel was classified into one of the six cover type categories. The classification result was evaluated by both qualitative interpretation and quantitative comparison with existing forest statistics. Considering frequent data acquisition, low data cost and volume, and large area coverage, it is believed that AVHRR data are effective for vegetation cover type mapping at regional scale.

  • PDF