• 제목/요약/키워드: Radiometer Calibration

검색결과 31건 처리시간 0.024초

순복사계의 야외 상호 비교 및 보정 (Field Intercomparison and Calibration of Net Radiometers)

  • Byung-Kwan Moon;Sang-Boom Ryoo;Yong-Hoon Youn;Jonghwan Lim;Joon Kim
    • 한국농림기상학회지
    • /
    • 제5권2호
    • /
    • pp.128-137
    • /
    • 2003
  • 순복사는 지표 에너지 수지의 가장 근본적인 요소 중 하나이다. 순복사의 정확한 관측을 위해, 주기적이고 지속적인 순복사계 보정이 요구된다. 플럭스 관측에 널리 사용되는, 두 가지 타입의 대표적인 순복사계 (Q-7.1과 CNR1)의 상호 비교 및 보정 실험이 약 4개월 간격으로 두 차례 시행되었다. Q-7.1과 CNR1 간의 차이는 7.7% 이내였고, 표준 기기와의 보정 후 오차는 3.2%이내였다. 순복사계의 반응 차이와 보정 계수는 대기 상태, 특히 계절 변화에 따른 온도 차이에 따라 다르게 나타났다. 결론적으로, 주기적으로 보정된 Q-7.1은 CNR1을 대체하여 장기 관측에 사용될 수 있고, 보정 주기로는 4-6개월이 권장된다.

레이저 섬광법에 의한 열확산계수 측정시 적외검출소자에서 실시간 온도보정이 미치는 영향 (Effects of the in-process calibration from IR detector for thermal diffusivity measurement by laser flash method)

  • 이원식;배신철
    • 설비공학논문집
    • /
    • 제10권6호
    • /
    • pp.795-802
    • /
    • 1998
  • For measuring the thermal diffusivity by laser flash method, raw data have to be calibrated using temperature data. We have developed in-process calibration method and polynomial calibration in which thermal diffusivity can be calibrated during measuring, This method is different from existing temperature pre-process calibration method and exponential calibration having various source of error. Using this new calibration method, measurement accuracy was improved about 1∼2% compare to the value by the existing method. We also studied more accurate fitting curve as in Figure 4 was shown the result of measuring output characteristics of IR radiometer with temperature. As illustrated in data, in-process calibration method and polynomial calibration equation is proper than pre-process calibration method and exponential calibration.

  • PDF

The Ka-band Low Noise and Stable Receiver Design of Digital Correlation Radiometer for High Spatial Resolution

  • Choi, Jun-Ho;Kim, Sung-Hyun;Kang, Gum-Sil;Park, Hyuk;Choi, Seh-Wan;Jiang, Jing-Shan;Kim, Yong-Hoon
    • 대한원격탐사학회:학술대회논문집
    • /
    • 대한원격탐사학회 2002년도 Proceedings of International Symposium on Remote Sensing
    • /
    • pp.297-302
    • /
    • 2002
  • The subsystems of two channel correlation radiometer such as RF front-end, IF and LF unit, LO unit, software based I/Q demodulator and complex correlator are characterized and their performance is analyzed in this paper. The limited hardware calibration method and receiver design consideration are discussed. The receiver architecture of 37GHz correlation radiometer is integrated. The designed radiometer employs a single-sideband superheterodyne receiver. The center frequency of the radiometer is 37 GHz and IF center frequency is 1.95 GHz with the equivalent noise bandwidth of 79.6 MHz. The receiver has less than 4.2 dB noise figure which is calculated by the Y-factor method and its gain can be adjusted from 60 dB to 80 dB.

  • PDF

POST-LAUNCH RADIOMETRIC CALIBRATION OF KOMPSAT2 HIGH RESOLUTION IMAGE

  • Yoon, Jong-Suk;Lee, Kyu-Sung;Chi, Jun-Hwa;Lee, Dong-Han
    • 대한원격탐사학회:학술대회논문집
    • /
    • 대한원격탐사학회 2006년도 Proceedings of ISRS 2006 PORSEC Volume I
    • /
    • pp.402-405
    • /
    • 2006
  • Radiometric calibration of optical image data is necessary to convert raw digital number (DN) value of each pixel into a physically meaningful measurement (radiance). To extract rather quantitative information regarding biophysical characteristics of the earth surface materials, radiometric calibration is often essential procedure. A sensor detects the radiation of sunlight interacted atmospheric constituents. Therefore, the amount of the energy reaching at the sensor is quite different from the initial amount reflected from the surface. To achieve the target reflectance after atmospheric correct, an initial step is to convert DN value to at-sensor radiance. A linear model, the simplest radiometric model, is applied to averaged spectral radiance for this conversion. This study purposes to analyze the sensitivity of several factors affecting on radiance for carrying out absolute radiometric calibration of panchromatic images from KOMPSAT2 launched at July, 2006. MODTRAN is used to calculate radiance at sensor and reflectance of target is measured by a portable spectro-radiometer at the same time the satellite is passing the target for the radiometric calibration. As using different contents of materials composing of atmosphere, the differences of radiance are investigated. Because the spectral sensitivity of panchromatic images of KOMPSAT2 ranges from 500 to 900 nm, the materials causing scattering in visible range are mainly considered to analyze the sensitivity. According to the verified sensitivity, direct measurement can be recommenced for absolute radiometric calibration.

  • PDF

표준준기에 의한 일사계 교정 (Thermopile Radiometer Calibration Using Reference Instrument)

  • 조덕기;윤창열;김광득;강용혁
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2010년도 춘계학술대회 초록집
    • /
    • pp.199.2-199.2
    • /
    • 2010
  • The main purpose of the calibration procedure is to perform a one to one comparison of the reference pyranometer and the test pyranometer. In order to achieve this, both pyranometers need to be exposed to exactly the same irradiance, under the same circumstances. There are a number of error sources that could result in a wrong measurement. Most importantly Lamp instability, pyranometer offsets, thermal offsets of junctions, voltmeter offset, voltmeter instability, reference pyranometer instability, tilting of the pyranometers and differences in sensor height. Another sun-disc calibration procedure compares the computed vertical component of the direct irradiance as measured by a pyranometer with that measured by the pyranometer to be calibrated. Readings are taken with the levelled pyranometer on a clear day. Firstly the global irradiance and then the diffuse component are measured. Simultaneously measurement of direct irradiance is made with the pyrheliometer. The ways of performing the calibration and the subsequent calculation have been chosen such that the effect all these error sources has been eliminated as much as possible.

  • PDF

Radiometric Characteristics of KOMPSAT EOC Data Assessed by Simulating the Sensor Received Radiance

  • Kim, Jeong-Hyun;Lee, Kyu-Sung;Kim, Du-Ra
    • 대한원격탐사학회지
    • /
    • 제18권5호
    • /
    • pp.281-289
    • /
    • 2002
  • Although EOC data have been frequently used in several applications since the launch of the KOMPSAT-1 satellite in 1999, its radiometric characteristics are not clear due to the inherent limitations of the on-board calibration system. The radiometric characteristics of remotely sensed imagery can be measured by the sensitivity of radiant flux coming from various surface features on the earth. The objective of this study is to analyze the radiometric characteristics of EOC data by simulating the sensor- received radiance. Initially, spectral reflectance values of reference targets were measured on the ground by using a portable spectre-radiometer at the EOC spectrum. A radiative transfer model, LOWTRAN, then simulated the sensor-received radiance values of the same reference target. By correlating the digital number (DN) extracted from the EOC image to the corresponding radiance values simulated from LOWTRAN, we could find the radiometric calibration coefficients for EOC image. The radiometric gain coefficients of EOC are very similar to those of other panchromatic optical sensors.

VERTICAL OZONE DENSITY PROFILING BY UV RADIOMETER ONBOARD KSR-III

  • Hwang Seung-Hyun;Kim Jhoon;Lee Soo-Jin;Kim Kwang-Soo;Ji Ki-Man;Shin Myung-Ho;Chung Eui-Seung
    • 한국우주과학회:학술대회논문집(한국우주과학회보)
    • /
    • 한국우주과학회 2004년도 한국우주과학회보 제13권2호
    • /
    • pp.372-375
    • /
    • 2004
  • The UV radiometer payload was launched successfully from the west coastal area of Korea Peninsula aboard KSR-III on 28, Nov 2002. KSR-III was the Korean third generation sounding rocket and was developed as intermediate step to larger space launch vehicle with liquid propulsion engine system. UV radiometer onboard KSR-III consists of UV and visible band optical phototubes to measure the direct solar attenuation during rocket ascending phase. For UV detection, 4 channel of sensors were installed in electronics payload section and each channel has 255, 290, 310nm center wavelengths, respectively. 450nm channel was used as reference for correction of the rocket attitude during the flight. Transmission characteristics of all channels were calibrated precisely prior to the flight test at the Optical Lab. in KARI (Korea Aerospace Research Institute). During a total of 231s flight time, the onboard data telemetered to the ground station in real time. The ozone column density was calculated by this telemetry raw data. From the calculated column density, the vertical ozone profile over Korea Peninsula was obtained with sensor calibration data. Our results had reasonable agreements compared with various observations such as ground Umkhr measurement at Yonsei site, ozonesonde at Pohang site, and satellite measurements of HALOE and POAM. The sensitivity analysis of retrieval algorithm for parameters was performed and it was provided that significant error sources of the retrieval algorithm.

  • PDF

Examining a Vicarious Calibration Method for the TOA Radiance Initialization of KOMPSAT OSMI

  • Sohn, Byung-Ju;Yoo, Sin-Jae;Kim, Yong-Seung;Kim, Do-hyeong
    • 대한원격탐사학회지
    • /
    • 제16권4호
    • /
    • pp.305-313
    • /
    • 2000
  • A vicarious calibration method was developed for the OSMI sensor calibration. Employing measured aerosol optical thickness by a sunphotometer and a sky radiometer and water leaving radiance by ship measurements as inputs, TOA (top of the atmosphere) radiance at each OSMI band was simulated in conjunction with a radiative transfer model (Rstar5b) by Nakajima and Tanaka (1988). As a case of examining the accuracy of this method, we simulated TOA radiance based on water leaving radiance measured at NASA/MOBY site and aerosol optical thickness estimated nearby at Lanai, and compared simulated results with SeaWiFS-estimated TOA radiances. The difference falls within about $\pm$5%, suggesting that OMSI sensor can be calibrated with the suggested accuracy. In order to apply this method for the OSMI sensor calibration, ground-based sun photometry and ship measurements were carried out off the east coast of Korean peninsula on May 31, 2000. Simulations of TOA radiance by using these measured data as input to the radiative transfer model show that there are substantial differences between simulated and OSMI-estimated radiances. Such a discrepancy appears to be mainly due to the cloud contamination because satellite image indicates optically thin clouds over the experimental area. Nevertheless results suggest that sensor calibration can be achieved within 5% uncertainty range if there are ground-based measurements of aerosol optical thickness, and water leaving radiances under clear-sky and optically thin atmospheric conditions.

Evaluation of GSICS Correction for COMS/MI Visible Channel Using S-NPP/VIIRS

  • Jin, Donghyun;Lee, Soobong;Lee, Seonyoung;Jung, Daeseong;Sim, Suyoung;Huh, Morang;Han, Kyung-soo
    • 대한원격탐사학회지
    • /
    • 제37권1호
    • /
    • pp.169-176
    • /
    • 2021
  • The Global Space-based Inter-Calibration System (GSICS) is an international partnership sponsored by World Meteorological Organization (WMO) to continue and improve climate monitoring and to ensure consistent accuracy between observation data from meteorological satellites operating around the world. The objective for GSICS is to inter-calibration from pairs of satellites observations, which includes direct comparison of collocated Geostationary Earth Orbit (GEO)-Low Earth Orbit (LEO) observations. One of the GSICS inter-calibration methods, the Ray-matching technique, is a surrogate approach that uses matched, co-angled and co-located pixels to transfer the calibration from a well calibrated satellite sensor to another sensor. In Korea, the first GEO satellite, Communication Ocean and Meteorological Satellite (COMS), is used to participate in the GSICS program. The National Meteorological Satellite Center (NMSC), which operated COMS/MI, calculated the Radiative Transfer Model (RTM)-based GSICS coefficient coefficients. The L1P reproduced through GSICS correction coefficient showed lower RMSE and Bias than L1B without GSICS correction coefficient applied. The calculation cycles of the GSICS correction coefficients for COMS/MI visible channel are provided annual and diurnal (2, 5, 10, 14-day), but long-term evaluation according to these cycles was not performed. The purpose of this paper is to perform evaluation depending on the annual/diurnal cycles of COMS/MI GSICS correction coefficients based on the ray-matching technique using Suomi-NPP/Visible Infrared Imaging Radiometer Suite (VIIRS) data as reference data. As a result of evaluation, the diurnal cycle had a higher coincidence rate with the reference data than the annual cycle, and the 14-day diurnal cycle was the most suitable for use as the GSICS correction coefficient.

적외선 라디오미터 관측 자료를 활용한 해양 피층 수온 산출 (Retrieval of Oceanic Skin Sea Surface Temperature using Infrared Sea Surface Temperature Autonomous Radiometer (ISAR) Radiance Measurements)

  • 김희영;박경애
    • 한국지구과학회지
    • /
    • 제41권6호
    • /
    • pp.617-629
    • /
    • 2020
  • 기후변화와 지구환경변화에 중요한 역할을 하고 있는 해수면온도는 인공위성 적외선 센서가 관측하는 피층 수온과 측기들이 관측하는 표층 수온으로 나누어질 수 있다. 국외 여러 기관에서 보급되고 있는 해수면온도 관측 자료들은 각각 서로 다른 깊이의 수온을 나타내고 있어서 해양 피층과 표층 수온 사이의 관계를 이해하는 것은 매우 중요하다. 본 연구에서는 적외선 라디오미터를 해양조사선에 장착하기 위한 시스템을 설계하고 부착하고 운용하여 국내에서 처음으로 해양 피층 수온을 산출할 수 있는 관측 환경을 구축하였다. 선박 관측 전에 실험실에서 라디오미터 기기의 검보정을 실시하여 보정 계수를 산출하였다. 관측된 해수면에서 방출된 복사에너지와 하늘 복사에너지를 피층 수온으로 산출하는 일련의 과정을 적용하였다. 산출된 피층 해수면온도를 현장 관측 표층 수온자료와 비교하여 표층과 피층 수온 차이를 정량적으로 조사하고자 하였으며, Himawari-8 정지궤도 위성 해수면온도 자료와의 비교를 통해 해양 상층 연직구조의 특성을 이해하고자 하였다. 2020년 4월 21일부터 5월 6일까지 남해안의 장목항과 동해 남부를 관측한 해양 피층 수온은 전체적으로 표층 수온과 0.76℃ 정도의 차이를 보였다. 또한 이 두 수온 차이의 평균제곱근오차는 약 0.6℃에서 0.9℃까지의 일간변화를 가지고 있었으며, 하루 중 1-3시에 0.83-0.89℃로 가장 크게 나타났으며, 15시에 0.59℃로 최소의 차이를 가지고 있었다. 또한 편차도 0.47-0.75℃의 일간변화를 나타내었다. 해양 피층 관측 수온과 위성 해수면 온도 간 차이는 약 0.74℃의 평균제곱근오차, 0.37℃의 편차를 나타냈다. 본 연구의 분석을 통해 관측 수심에 따른 피층-표층 수온의 차이를 확인할 수 있었으며, 피층-표층 수온 차의 계절적 변화를 정량적으로 이해하고 또 변동 요인과의 관련성을 연구하기 위하여 연구조사선을 이용한 추가적인 연안 및 대양 관측이 지속적으로 진행되어야 함을 시사한다.