• Title/Summary/Keyword: Radiometer

Search Result 358, Processing Time 0.097 seconds

Design and Fabrication of a W-band Total Power Radiometer (W-대역 Total Power Radiometer 설계 및 제작)

  • Jung, Myung-Suk
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.9 no.2 s.25
    • /
    • pp.103-110
    • /
    • 2006
  • We present a W-band radiometer to detect the metal targets on the ground environment. The type of the designed radiometer is the total power radiometer(TPR) for the simple configuration. The front end of the TPR consists of only the Mixer and LO for miniaturizing the system. Because the radiometer system does not use the low noise amplifier, we use matching circuits and a diode detector configured as a voltage doubler to compensate the degradation of sensitivity. We solve the temperature variation problems by filtering the reference voltages of the radiometer output signals. Through some experiments, we have verified that the designed radiometer system has good performances in detecting metal targets lying at several hundred meters.

Microwave Radiometer for Space Science and DREAM Mission of STSAT-2

  • Kim, Y.H.
    • Bulletin of the Korean Space Science Society
    • /
    • 2008.10a
    • /
    • pp.31.4-32
    • /
    • 2008
  • The microwave instruments are used many areas of the space remote sensing and space science applications. The imaging radar of synthetic aperture radar (SAR) is well known microwave radar sensor for earth surface and ocean research. Unlike radar, microwave radiometer is passive instrument and it measures the emission energy of target, i.e. brightness temperature BT, from earth surface and atmosphere. From measured BT, the geophysical data like cloud liquid water, water vapor, sea surface temperature, surface permittivity can be retrieved. In this paper, the radiometer characteristics, system configuration and principle of BT measurement are described. Also the radiometer instruments TRMM, GPM, SMOS for earth climate, and ocean salinity research are introduce. As first korean microwave payload on STSAT-2, the DREAM (Dual-channels Radiometer for Earth and Atmosphere Monitoring) is described the mission, system configuration and operation plan for life time of two years. The main issues of DREAM unlike other spaceborne radiometers, will be addressed. The calibration is the one of main issues of DREAM mission and how it contribute on the space borne radiometer. In conclusion, the radiometer instrument to space science application will be considered.

  • PDF

Radiometer Performance Measure Using A Millimeterwave(Ka-band) Seeker (밀리미터파(Ka-밴드) 탐색기를 이용한 라디오미터 성능 측정)

  • Hong, Young-Gon;Lee, Man-Hee;Ahn, Se-Hwan;Kim, Young-Gon;Kim, Yoon-Jin;Kim, Hong-Rak
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.19 no.6
    • /
    • pp.87-93
    • /
    • 2019
  • We discuss the design of a radiometer using a millimeterwave(Ka-band) seeker. We applied a total power radiometer, thus the radiometer is composed of a IF-drive amp, band-pass filter, detector and an Op-amp additionally. As a radiometer measure a radiated signal of an object which is noise-like, a radiometer is easily affected by the variance of system temperature. To mitigate an adverse effect, we propose a compensation method in a radiometer without brightmess temperature compensation circuits. Through some experiments such like a distinction a target and the background, we have verified that the designed radiometer system has distingushed a car from the ground completely.

Initial Experiment Results in the Development of a L-Band Microwave Radiometer for Remote Sensing of Sea and River Surface Salinity (해수 및 하천수의 염분농도 원격탐사용 L-Band M/W Radiometer의 개발 및 초기 실험결과)

  • Kim, Sang-Bong;Kim, Ji-Hoon;Son, Hong-Min
    • Proceedings of the KSRS Conference
    • /
    • 2007.03a
    • /
    • pp.65-69
    • /
    • 2007
  • A L-Band microwave radiometer for remote sensing of sea and river surface salinity has been developed. The processes of the design and implementation of the microwave radiometer, and the experiment results are presented in this paper. The developed L-Band microwave radiometer was field-tested in Sum-Jin River. The initial results shows that the microwave radiometer measures the sea and river surface salinity with the sensitivity of 1.5psu successfully.

  • PDF

ESTIMATION OF SOIL MOISTURE WITH AIRBORNE L-BAND MICROWAVE RADIOMETER

  • Chang, Tzu-Yin;Liou, Yuei-An
    • Proceedings of the KSRS Conference
    • /
    • 2008.10a
    • /
    • pp.26-28
    • /
    • 2008
  • Soil moisture plays an important role in the land-atmosphere energy balance because it governs the partitioning of energy through latent heat fluxes or evapotranspiration. From the numerous studies, it is evident that the L-band radiometer is a useful and effective tool to measure soil moisture. The objective of the study is to develop and to verify the soil moisture retrieval algorithms for the L-band radiometer system. Through the radiometer-observed brightness temperature, surface emissivity and reflectivity can be derived, and, hence, soil moisture. We collect field and L-band airborne radiometer data from washita92, SGP97 and SGP99 experiments to assist the development of the retrieval algorithms. Upon launching the satellite L-band radiometer such as ESA-sponsored SMOS (Soil Moisture and Ocean Salinity) mission, the developed algorithms may be used to study and monitor globe soil moisture change.

  • PDF

Combined Microwave Radiometer and Micro Rain Radar for Analysis of Cloud Liquid Water

  • Yang, Ha-Young;Chang, Ki-Ho;Kang, Seong-Tae
    • Journal of Integrative Natural Science
    • /
    • v.6 no.1
    • /
    • pp.12-15
    • /
    • 2013
  • To combine the micro rain radar and microwave radiometer cloud liquid water, we estimate the cloud physical thickness from the difference between the MTSAT-1R cloud top height and cloud base height of visual observation of Daegwallyeong weather station, and the cloud liquid water path of micro rain radar is obtained by multiplying the liquid water content of micro rain radar and the estimated cloud physical thickness. The trend of microwave radiometer liquid water path agrees with that of the micro rain radar during small precipitation. We study these characteristics of micro rain radar and microwave radiometer for small precipitation to obtain the combined cloud water content of micro rain radar and microwave radiometer, constantly operated regardless to the rainfall.

Design of a W-band Radiometer Simultaneously Operating with a Single-Antenna Configured FMCW Radar (단일 안테나를 사용하는 FMCW 레이더와 동시 운용이 가능한 W-대역 레디오미터 설계)

  • Jung Myung-Suk;Kim Wan-Joo
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.43 no.4 s.346
    • /
    • pp.67-74
    • /
    • 2006
  • We present the design of a radiometer in W-band which operates simultaneously with a single antenna configured FMCW radar. We choose a total power radiometer(TPR) which shares an antenna and a front-end with the radar for miniaturizing the system. We separate the radiometer signal from the radar signal using a diplexer in IF band. Because the radiometer has an unwanted transmitter section due to the common use of the MMW front-end with the radar, some additional noise signals caused by the transmitter degrade the sensitivity of the radiometer system. To compensate the degradation of sensitivity, we use matching circuits and a diode detector configured as the voltage doubler. Through some experiments, we have verified that the designed radiometer system has good performances in detecting metal targets tying at several hundred meters.

92 GHz Radiometer System for Remote Sensing Applications

  • Kim, Yong-Hoon;Kim, Sung-Hyun;Kang, Gum-Sil;Kim, Han-Sik;Yang, Ki-Seok
    • Proceedings of the KSRS Conference
    • /
    • 1999.11a
    • /
    • pp.462-467
    • /
    • 1999
  • In this paper, very high performance millimeter-wave radiometer of 92 GHz is presented. Radiometer system design, brightness temperature measurement and calibration methods are described. The architecture of radiometer including data acquisition, storage and digital signal processing using a notebook computer are explained and some experimental data in the laboratory are introduced. The system noise figure and total gain of implemented radiometer are 12 dB and 56 dB, respectively. The system stability is evaluated from the experiment. The difference of the detector output voltage for two targets, whose brightness temperature are 80 K and 300K, is 4 mV. The mechanical scanning method is considered to get a brightness temperature Image of the earth surface scene.

  • PDF

A Study on a Human Body Detection Sensor Using Microwave Radiometer Technologies (마이크로파 라디오미터 기술을 응용한 인체 감지 센서에 관한 연구)

  • Son, Hong-Min;Park, Hong-Kyun
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.10 no.3
    • /
    • pp.333-340
    • /
    • 2015
  • In this paper, we propose a passive microwave sensor for detecting human body using microwave radiometer technologies. The proposed sensor detects human body by measuring the change of the received radiation power from fixed background object due to human body. A C-band microwave radiometer is designed and implemented. The received radiation power changes due to human body is measured by the C-band microwave radiometer, and the effectiveness of the proposed sensor is evaluated by the measurement result analysis.

System Requirement Analysis of Passive Microwave Radiometer in Earth Observation Satellite (지구관측위성 수동형 마이크로파 라디오미터의 시스템 설계 요구 사항 분석 연구)

  • Ryu, Sang-Burm;Yong, Sang-Soon;Lee, Sang-Kon;Lee, Seung-Hoon
    • Journal of Satellite, Information and Communications
    • /
    • v.7 no.2
    • /
    • pp.87-96
    • /
    • 2012
  • In this research, we describe recent technologies and system requirements of the passive microwave radiometer used in Earth observation satellites. And we classify types of microwave radiometer system for Earth observation satellites according to observation targets and ways to scan and discuss a design method. Also, requirements of passive radiometer for Earth observation missions in the latest practical examples used and developed are analyzed in this research.