• Title/Summary/Keyword: Radiological hazard

Search Result 62, Processing Time 0.024 seconds

Activity concentrations and radiological hazard assessments of 226Ra, 232Th, 40K, and 137Cs in soil samples obtained from the Dongnam Institute of Radiological & Medical Science, Korea

  • Jieun Lee;HyoJin Kim;Yong Uk Kye; Dong Yeon Lee;Wol Soon Jo;Chang Geun Lee;Jeung Kee Kim;Jeong-Hwa Baek;Yeong-Rok Kang
    • Nuclear Engineering and Technology
    • /
    • v.55 no.7
    • /
    • pp.2388-2394
    • /
    • 2023
  • The radioactivity concentration of environmental radionuclides was analyzed for soil and sand at eight locations within a radius of 255 m centered on the Dongnam Institute of Radiological & Medical Science (DIRAMS), Korea. The average activity concentrations of 40K, 137Cs, 226Ra, and 232Th were 661.1 Bq/kg-dry, 0.9 Bq/kg-dry, 21.9 Bq/kg-dry, and 11.1 Bq/kg-dry, respectively. The activity of 40K and 137Cs was lower than the 3-year (2017-2019) average reported by the Korea Institute of Nuclear Safety, respectively. Due to the nature of granite-rich soil, the radioactivity of 40K was 0.6-fold higher than in other countries, while 137Cs was in the normal fluctuation range (15-30 Bq/kg-dry) of the concentration of radioactive fallout from nuclear tests. The activity of 226Ra and 232Th was lower than in Korean soils reported by the United Nations Scientific Committee on the Effects of Atomic Radiation (UNSCEAR). The average activity concentrations of 232Th and 40K for the soil and sand samples from DIRAMS were within the range specified by UNSCEAR in 2000. The radium equivalent activity and internal and external hazard index values were below the recommended limits (1 mSv/y). These radionuclide concentration (226Ra, 232Th, 40K, and 137Cs) data can be used for regional environmental monitoring and ecological impact assessments of nuclear power plant accidents.

Assessment of radioactivity levels and radiation hazards in building materials in Egypt

  • Ahmed E. Abdel Gawad;Mohamed Y. Hanfi;Mostafa N. Tawfik;Mohammed S. Alqahtani;Hamed I. Mira
    • Nuclear Engineering and Technology
    • /
    • v.56 no.2
    • /
    • pp.707-714
    • /
    • 2024
  • Different degrees of natural radioactivity found in quartz can have negative consequences on health. Quartz vein along the investigated Abu Ramad area, Egypt, had its natural radioactivity assessed. The HPGe spectrometer was used to determine the role played by the radionuclides 238U, 232Th, and 40K in the gamma radiation that was emitted, and the results showed that these concentrations are 484.64 ± 288.4, 36.8 ± 13.1 and 772.2 ± 134.6 Bq kg-1 were higher than the corresponding reported global limits of 33, 45, and 412 Bq kg-1 for each radionuclide (238U, 232Th, and 40K). Among the radiological hazard parameters, the excess lifetime cancer risk (ELCR) is estimated and it's mean value of ELCR (1.2) is higher than the permissible limit of 0.00029. The relationship between the radionuclides and the associated radiological hazard characteristics was investigated based on multivariate statistical methods including Pearson correlation, principal component analysis (PCA), and hierarchical cluster analysis (HCA). According to statistical research, the radioactive risk of quartz is primarily caused by the 238U, 232Thand 40K. Finally, applying quartz to building materials would pose a significant risk to the public.

Assessment of Radiological Hazards in Some Foods Products Consumed by the Malian Population Using Gamma Spectrometry

  • Adama Coulibaly;David O. Kpeglo;Emmanuel O. Darko
    • Journal of Radiation Protection and Research
    • /
    • v.48 no.2
    • /
    • pp.84-89
    • /
    • 2023
  • Background: Food consumption is one of the most important routes for radionuclide intake for the public; therefore, there is the need to have a comprehensive understanding of the amount of radioactivity in food products. Consumption of radionuclide-contaminated food could increase potential health risks associated with exposure to radiation such as cancers. The present study aims to determine radioactivity levels in some food products (milk, rice, sugar, and wheat flour) consumed in Mali and to evaluate the radiological effect on the public health from these radionuclides. Materials and Methods: The health impact due to ingestion of radionuclides from these foods was evaluated by the determination of activity concentration of radionuclides 238U, 232Th, 40K, and 137Cs using gamma spectrometry system with high-purity germanium detector and radiological hazards index in 16 samples collected in some markets, mall, and shops of Bamako-Mali. Results and Discussion: The average activity concentrations were 9.8±0.6 Bq/kg for 238U, 8.7±0.5 Bq/kg for 232Th, 162.9±7.9 Bq/kg for 40K, and 0.0035±0.0005 Bq/kg for 137Cs. The mean values of radiological hazard parameters such as annual committed effective dose, internal hazard index, and risk assessment from this work were within the dose criteria limits given by international organizations (International Commission on Radiological Protection and United Nations Scientific Committee on the Effects of Atomic Radiation) and national standards. Conclusion: The results show low public exposure to radioactivity and associated radiological impact on public health. Nevertheless, this study stipulates vital data for future research and regulatory authorities in Mali.

Assessment of occupational radiation exposure of NORM scales residues from oil and gas production

  • EL Hadji Mamadou Fall;Abderrazak Nechaf;Modou Niang;Nadia Rabia;Fatou Ndoye;Ndeye Arame Boye Faye
    • Nuclear Engineering and Technology
    • /
    • v.55 no.5
    • /
    • pp.1757-1762
    • /
    • 2023
  • Radiological hazards from external exposure of naturally occurring radioactive materials (NORM) scales residues, generated during the extraction process of oil and gas production in southern Algeria, are evaluated. The activity concentrations of 226Ra, 232Th, and 40K were measured using high-purity gamma-ray spectrometry (GeHP). Mean activity concentration of 226Ra, 232Th and 40K, found in scale samples are 4082 ± 41, 1060 ± 38 and 568 ± 36 Bq kg-1, respectively. Radiological hazard parameters, such as radium equivalent (Raeq), external and internal hazard indices (Hex, Hin), and gamma index (Iγ) are also evaluated. All hazard parameter values were greater than the permissible and recommended limits and the average annual effective dose value exceeded the dose constraint (0.3 mSv y-1). However, for occasionally exposed workers, the dose rate of 0.65 ± 0.02 mSv y-1 is lower than recommended limit of 1 mSv y-1 for public.

Balloon Bronchoplasty for the Treatment of Bronchial Stenosis After Lung Transplantation: A Single-Center 10-Year Experience

  • Dong Kyu Kim;Joon Ho Kwon;Kichang Han;Man-Deuk Kim;Gyoung Min Kim;Sungmo Moon;Juil Park;Jong Yun Won;Hyung Cheol Kim;Sei Hyun Chun;Seung Myeon Choi
    • Korean Journal of Radiology
    • /
    • v.24 no.5
    • /
    • pp.424-433
    • /
    • 2023
  • Objective: To assess the safety and efficacy of balloon dilatation under dual guidance using fluoroscopy and bronchoscopy for treating bronchial stenosis following lung transplantation (LT), and to elucidate the factors associated with patency after the procedure. Materials and Methods: From September, 2012, to April, 2021, 50 patients (mean age ± standard deviation, 54.4 ± 12.2 years) with bronchial stenosis among 361 recipients of LT were retrospectively analyzed. The safety of balloon dilatation was assessed by evaluating procedure-related complications. Efficacy was assessed by evaluating the technical success, primary patency, and secondary patency. Primary and secondary cumulative patency rates were calculated using the Kaplan-Meier method. The factors associated with patency after the procedure were evaluated using multivariable Cox hazard proportional regression analysis. Results: In total, 65 bronchi were treated with balloon dilatation in 50 patients. The total number of treatment sessions was 277 and the technical success rate was 99.3% (275/277 sessions). No major procedure-related complications were noted. During the mean follow-up period of 34.6 ± 30.8 months, primary patency was achieved in 12 of 65 bronchi (18.5%). However, the patency rate improved to 76.9% (50 of 65 bronchi) after repeated balloon dilatation (secondary patency). The 6-month, 1-year, 3-year, and 5-year secondary patency rates were 95.4%, 90.8%, 83.1%, and 78.5%, respectively. The presence of clinical symptoms was a significant prognostic factor associated with reduced primary patency (adjusted hazard ratio [HR], 0.465; 95% confidence interval [CI], 0.220-0.987). Early-stage treatment ≤ 6 months (adjusted HR, 3.588; 95% CI, 1.093-11.780) and prolonged balloon dilatation > 5 min (adjusted HR, 3.285; 95% CI, 1.018-10.598) were associated with significantly higher secondary patency. Conclusion: Repeated balloon dilatation was determined to be safe and effective for treating bronchial stenosis following LT. Early-stage treatment and prolonged balloon dilatation could significantly promote long-term patency.

Implementation of Radiation Damage in Vitro Model using Swine Skin (돼지피부를 사용한 방사선 체외 장해모델 구현연구)

  • Jung, Hongmoon;Won, Doyeon;Jeong, Dong Kyung;Jung, Jaeeun
    • Journal of the Korean Society of Radiology
    • /
    • v.10 no.2
    • /
    • pp.139-144
    • /
    • 2016
  • The study of radiation-hazard in the human skin tissue is carried out by direct irradiating to experimental animals. The influences of a radiation to the animal's skin tissue are analyzed from this experiment. However, this also accompanies losses in terms of both time and economy. In this study, we simulated human tissue by using a swine skin tissue. The depth of the swine skin tissue for the experiment is determined, and the amount of the direct radiation below this skin depth is analyzed numerically. The amount of the radiation occurred by exposure below the skin tissue can be inferred. Moreover, it is possible to use only cells effectively and animal experiments to analyze the body-hazard by radiation.

Analysis of radioactivity levels and hazard assessment of black sand samples from Rashid area, Egypt

  • Abdel-Rahman, Mohamed A.E.;El-Mongy, Sayed A.
    • Nuclear Engineering and Technology
    • /
    • v.49 no.8
    • /
    • pp.1752-1757
    • /
    • 2017
  • The aim of this study is to evaluate the radioactivity levels and radiological impacts of representative black sand samples collected from different locations in the Rashid area, Egypt. These samples were prepared and then analyzed using the high-resolution gamma ray spectroscopy technique with a high-purity germanium detector. The activity concentration ($A_c$), minimum detectable activity, absorbed gamma dose rate, external hazard index ($H_{ex}$), annual effective dose rate equivalent, radium equivalent, as well as external and internal hazard index ($H_{ex}$ and $H_{in}$, respectively) were estimated based on the measured radionuclide concentration of the $^{238}U$($^{226}Ra$) and $^{232}Th$ decay chains and $^{40}K$. The activity concentrations of the $^{238}U$, $^{232}Th$ decay series and $^{40}K$ of these samples varied from $45.11{\pm}3.1Bq/kg$ to $252.38{\pm}34.3Bq/kg$, from $64.65{\pm}6.1Bq/kg$ to $579.84{\pm}53.1Bq/kg$, and from $403.36{\pm}20.8Bq/kg$ to $527.47{\pm}23.1Bq/kg$, respectively. The activity concentration of $^{232}Th$ in Sample 1 has the highest value compared to the other samples; this value is also higher than the worldwide mean range as reported by UNSCEAR 2000. The total absorbed gamma dose rate and the annual effective dose for these samples were found to vary from 81.19 nGy/h to 497.81 nGy/h and from $99.86{\mu}Sv/y$ to $612.31{\mu}Sv/y$, which are higher than the world average values of 59 nGy/h and $70{\mu}Sv/y$, respectively. The $H_{ex}$ values were also calculated to be 3.02, 0.47, 0.63, 0.87, 0.87, 0.51 and 0.91. It was found that the calculated value of $H_{ex}$ for Sample 1 is significantly higher than the international acceptable limit of <1. The results are tabulated, depicted, and discussed within national and international frameworks, levels, and approaches.

Effects of Antithyroid Drugs on Accidentally Internal Contamination of Iodine-131 (Iodine-131 체내오염 사고에 대한 항갑상선제의 효과)

  • Chung, In-Yong;Kim, Tae-Whan;Chin, Soo-Yil;Yun, Taik-Koo
    • Journal of radiological science and technology
    • /
    • v.11 no.1
    • /
    • pp.63-69
    • /
    • 1988
  • In case of occuring the atomic energy accidents the proper medical treatments should be necessary. As the aim of the basic data for protective actions, the present studies were carried out to evaluate the decontamination of radioiodine by the administration of the antithyroid drugs (KI, NaI) and isotonic saline. Some recommended methods of decorporating radioiodine were investigated using 450, NIH-GP mice, each injected intraperitoneally with $1{\mu}Ci$ of $NaI^{131}$ as the internal contamination and treated with 2mg/0.2ml-saline of NaI and 2.6mg/0.2ml-saline of KI as the antithyroid drugs. Accordingly, effects of antithyroid drugs for internal contamination were: 1. Administration of NaI and KI caused to rapidly excrete internal radioiodine as the antithyroid drugs and decrease in whole body retention was reduced than in the saline group. 2. After internal contamination NaI and KI were to be administered for radioprotective effects as quickly as possible. 3. Decrease in body-retention made temporary shifts with enough fluids (water), however, as far as radioprotective effects is concerned, saline was not more significant than in the other group (NaI and KI). 4. Regarding to thyroid protective effects NaI, KI and saline were significant in effectively order.

  • PDF

Chemotherapy-Related Cardiac Dysfunction: Quantitative Cardiac Magnetic Resonance Image Parameters and Their Prognostic Implications

  • Jinhee Kim;Yoo Jin Hong;Kyunghwa Han;Jin Young Kim;Hye-Jeong Lee;Jin Hur;Young Jin Kim;Byoung Wook Choi
    • Korean Journal of Radiology
    • /
    • v.24 no.9
    • /
    • pp.838-848
    • /
    • 2023
  • Objective: To quantitatively analyze the cardiac magnetic resonance imaging (CMR) characteristics of chemotherapy-related cardiac dysfunction (CTRCD) and explore their prognostic value for major adverse cardiovascular events (MACE). Materials and Methods: A total of 145 patients (male:female = 76:69, mean age = 63.0 years) with cancer and heart failure who underwent CMR between January 2015 and January 2021 were included. CMR was performed using a 3T scanner (Siemens). Biventricular functions, native T1 T2, extracellular volume fraction (ECV) values, and late gadolinium enhancement (LGE) of the left ventricle (LV) were compared between those with and without CTRCD. These were compared between patients with mild-to-moderate CTRCD and those with severe CTRCD. Cox proportional hazard regression analysis was used to evaluate the association between the CMR parameters and MACE occurrence during follow-up in the CTRCD patients. Results: Among 145 patients, 61 had CTRCD and 84 did not have CTRCD. Native T1, ECV, and T2 were significantly higher in the CTRCD group (1336.9 ms, 32.5%, and 44.7 ms, respectively) than those in the non-CTRCD group (1303.4 ms, 30.5%, and 42.0 ms, respectively; P = 0.013, 0.010, and < 0.001, respectively). They were not significantly different between patients with mild-to-moderate and severe CTRCD. Indexed LV mass was significantly smaller in the CTRCD group (65.0 g/m2 vs. 78.9 g/mm2; P < 0.001). According to the multivariable Cox regression analysis, T2 (hazard ratio [HR]: 1.14, 95% confidence interval [CI]: 1.01-1.27; P = 0.028) and quantified LGE (HR: 1.07, 95% CI: 1.01-1.13; P = 0.021) were independently associated with MACE in the CTRCD patients. Conclusion: Quantitative parameters from CMR have the potential to evaluate myocardial changes in CTRCD. Increased T2 with reduced LV mass was demonstrated in CTRCD patients even before the development of severe cardiac dysfunction. T2 and quantified LGE may be independent prognostic factors for MACE in patients with CTRCD.