• Title/Summary/Keyword: Radiological feature

Search Result 64, Processing Time 0.027 seconds

Application of Texture Feature Analysis Algorithm used the Statistical Characteristics in the Computed Tomography (CT): A base on the Hepatocellular Carcinoma (HCC) (전산화단층촬영 영상에서 통계적 특징을 이용한 질감특징분석 알고리즘의 적용: 간세포암 중심으로)

  • Yoo, Jueun;Jun, Taesung;Kwon, Jina;Jeong, Juyoung;Im, Inchul;Lee, Jaeseung;Park, Hyonghu;Kwak, Byungjoon;Yu, Yunsik
    • Journal of the Korean Society of Radiology
    • /
    • v.7 no.1
    • /
    • pp.9-15
    • /
    • 2013
  • In this study, texture feature analysis (TFA) algorithm to automatic recognition of liver disease suggests by utilizing computed tomography (CT), by applying the algorithm computer-aided diagnosis (CAD) of hepatocellular carcinoma (HCC) design. Proposed the performance of each algorithm was to comparison and evaluation. In the HCC image, set up region of analysis (ROA, window size was $40{\times}40$ pixels) and by calculating the figures for TFA algorithm of the six parameters (average gray level, average contrast, measure of smoothness, skewness, measure of uniformity, entropy) HCC recognition rate were calculated. As a result, TFA was found to be significant as a measure of HCC recognition rate. Measure of uniformity was the most recognition. Average contrast, measure of smoothness, and skewness were relatively high, and average gray level, entropy showed a relatively low recognition rate of the parameters. In this regard, showed high recognition algorithms (a maximum of 97.14%, a minimum of 82.86%) use the determining HCC imaging lesions and assist early diagnosis of clinic. If this use to therapy, the diagnostic efficiency of clinical early diagnosis better than before. Later, after add the effective and quantitative analysis, criteria research for generalized of disease recognition is needed to be considered.

Development of CT/MRI based GUI Software for 3D Printer Application (3차원 프린터 응용을 위한 CT/MRI-영상 기반 GUI소프트웨어 개발)

  • Jung, Young-Jin
    • Journal of radiological science and technology
    • /
    • v.41 no.5
    • /
    • pp.451-456
    • /
    • 2018
  • During last a decade, there has been increased demand for 3D-printed medical devices with significant improvement of 3D-Printer (also known as Additive. Manufacturing AM), which depend upon human body features. Especially, demand for personalized medical material is highly growing with being super-aged society. In this study, 3D-reconstructed 3D mesh image from CT/MRI-images is demonstrated to analyse each patients' personalized anatomical features by using in house, then to be able to manufacture its counterpart. Developed software is distributed free of charge, letting various researcher identify biological feature for each areas.

Texture Feature analysis using Computed Tomography Imaging in Fatty Liver Disease Patients (Fatty Liver 환자의 컴퓨터단층촬영 영상을 이용한 질감특징분석)

  • Park, Hyong-Hu;Park, Ji-Koon;Choi, Il-Hong;Kang, Sang-Sik;Noh, Si-Cheol;Jung, Bong-Jae
    • Journal of the Korean Society of Radiology
    • /
    • v.10 no.2
    • /
    • pp.81-87
    • /
    • 2016
  • In this study we proposed a texture feature analysis algorithm that distinguishes between a normal image and a diseased image using CT images of some fatty liver patients, and generates both Eigen images and test images which can be applied to the proposed computer aided diagnosis system in order to perform a quantitative analysis for 6 parameters. And through the analysis, we derived and evaluated the recognition rate of CT images of fatty liver. As the results of examining over 30 example CT images of fatty liver, the recognition rates representing a specific texture feature-value are as follows: some appeared to be as high as 100% including Average Gray Level, Entropy 96.67%, Skewness 93.33%, and Smoothness while others showed a little low disease recognition rate: 83.33% for Uniformity 86.67% and for Average Contrast 80%. Consequently, based on this research result, if a software that enables a computer aided diagnosis system for medical images is developed, it will lead to the availability for the automatic detection of a diseased spot in CT images of fatty liver and quantitative analysis. And they can be used as computer aided diagnosis data, resulting in the increased accuracy and the shortened time in the stage of final reading.

Texture Feature Analysis Using a Brain Hemorrhage Patient CT Images (전산화단층촬영 영상을 이용한 뇌출혈 질감특징분석)

  • Park, Hyonghu;Park, Jikoon;Choi, Ilhong;Kang, Sangsik;Noh, Sicheol;Jung, Bongjae
    • Journal of the Korean Society of Radiology
    • /
    • v.9 no.6
    • /
    • pp.369-374
    • /
    • 2015
  • In this study we proposed a texture feature analysis algorithm that distinguishes between a normal image and a diseased image using CT images of some brain hemorrhage patients, and generates both Eigen images and test images which can be applied to the proposed computer aided diagnosis system in order to perform a quantitative analysis for 6 parameters. And through the analysis, we derived and evaluated the recognition rate of CT images of brain hemorrhage. As the results of examining over 40 example CT images of brain hemorrhage, the recognition rates representing a specific texture feature-value are as follows: some appeared to be as high as 100% including average gray level, average contrast, smoothness, and Skewness while others showed a little low disease recognition rate: 95% for uniformity and 87.5% for entropy. Consequently, based on this research result, if a software that enables a computer aided diagnosis system for medical images is developed, it will lead to the availability for the automatic detection of a diseased spot in CT images of brain hemorrhage and quantitative analysis. And they can be used as computer aided diagnosis data, resulting in the increased accuracy and the shortened time in the stage of final reading.

Simulation Study for Feature Identification of Dynamic Medical Image Reconstruction Technique Based on Singular Value Decomposition (특이값분해 기반 동적의료영상 재구성기법의 특징 파악을 위한 시뮬레이션 연구)

  • Kim, Do-Hui;Jung, YoungJin
    • Journal of radiological science and technology
    • /
    • v.42 no.2
    • /
    • pp.119-130
    • /
    • 2019
  • Positron emission tomography (PET) is widely used imaging modality for effective and accurate functional testing and medical diagnosis using radioactive isotopes. However, PET has difficulties in acquiring images with high image quality due to constraints such as the amount of radioactive isotopes injected into the patient, the detection time, the characteristics of the detector, and the patient's motion. In order to overcome this problem, we have succeeded to improve the image quality by using the dynamic image reconstruction method based on singular value decomposition. However, there is still some question about the characteristics of the proposed technique. In this study, the characteristics of reconstruction method based on singular value decomposition was estimated over computational simulation. As a result, we confirmed that the singular value decomposition based reconstruction technique distinguishes the images well when the signal - to - noise ratio of the input image is more than 20 decibels and the feature vector angle is more than 60 degrees. In addition, the proposed methode to estimate the characteristics of reconstruction technique can be applied to other spatio-temporal feature based dynamic image reconstruction techniques. The deduced conclusion of this study can be useful guideline to apply medical image into SVD based dynamic image reconstruction technique to improve the accuracy of medical diagnosis.

Study of machine learning model for predicting non-small cell lung cancer metastasis using image texture feature (Image texture feature를 이용하여 비소세포폐암 전이 예측 머신러닝 모델 연구)

  • Hye Min Ju;Sang-Keun Woo
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2023.07a
    • /
    • pp.313-315
    • /
    • 2023
  • 본 논문에서는 18F-FDG PET과 CT에서 추출한 영상인자를 이용하여 비소세포폐암의 전이를 예측하는 머신러닝 모델을 생성하였다. 18F-FDG는 종양의 포도당 대사 시 사용되며 이를 추적하여 환자의 암 세포를 진단하는데 사용되는 의료영상 기법 중 하나이다. PET과 CT 영상에서 추출한 이미지 특징은 종양의 생물학적 특성을 반영하며 해당 ROI로부터 계산되어 정량화된 값이다. 본 연구에서는 환자의 의료영상으로부터 image texture 프절 전이 예측에 있어 유의한 인자인지를 확인하기 위하여 AUC를 계산하고 단변량 분석을 진행하였다. PET과 CT에서 각각 4개(GLRLM_GLNU, SHAPE_Compacity only for 3D ROI, SHAPE_Volume_vx, SHAPE_Volume_mL)와 2개(NGLDM_Busyness, TLG_ml)의 image texture feature를 모델의 생성에 사용하였다. 생성된 각 모델의 성능을 평가하기 위해 accuracy와 AUC를 계산하였으며 그 결과 random forest(RF) 모델의 예측 정확도가 가장 높았다. 추출된 PET과 CT image texture feature를 함께 사용하여 모델을 훈련하였을 때가 각각 따로 사용하였을 때 보다 예측 성능이 개선됨을 확인하였다. 추출된 영상인자가 림프절 전이를 나타내는 바이오마커로서의 가능성을 확인할 수 있었으며 이러한 연구 결과를 바탕으로 개인별 의료 영상을 기반으로 한 비소세포폐암의 치료 전략을 수립할 수 있을 것이라 기대된다.

  • PDF

Single Particle Irradiation System to Cell (SPICE) at NIRS

  • Yamaguchi, Hiroshi;Ssto, Yukio;Imaseki, Hitoshi;Yasuda, Nakahiro;Hamano, Tsuyoshi;Furusawa, Yoshiya;Suzuki, Masao;Ishikawa, Takehiro;Mori, Teiji;Matsumoto, Kenichi;Konishi, Teruaki;Yukawa, Masae;Soga, Fuminori
    • Proceedings of the Korean Society of Medical Physics Conference
    • /
    • 2002.09a
    • /
    • pp.267-268
    • /
    • 2002
  • Microbeam is a new avenue of radiation research especially in radiation biology and radiation protection. Selective irradiation of an ionizing particle to a targeted cell organelle may disclose such mechanisms as signal transaction among cell organelles and cell-to-cell communication in the processes toward an endpoint observed. Bystander effect, existence of which is clearly evidenced by application of the particle microbeam to biological experiments, suggests potential underestimation in the conventional risk estimation at low particle fluence rates, such as environment of space radiations in ISS (International Space Station). To promote these studies we started the construction of our microbeam facility (named as SPICE) to our HVEE Tandem accelerator (3.4 MeV proton and 5.1 MeV $^4$He$\^$2+/). For our primary goal, "irradiation of single particle to cell organelle within a position resolution of 2 micrometer in a reasonable irradiation time", special features are considered. Usage of a triplet Q magnet for focussing the beam to submicron of size is an outstanding feature compared to facilities of other institutes. Followings are other features: precise position control of cell dish holder, design of the cell dish, data acquisition of microscopic image of a cell organelle (cell nucleus) and data processing, a reliable particle detection, soft and hard wares to integrate all these related data, to control and irradiate exactly determined number of particles to a targeted spot.

  • PDF

A CLINICOPATHOLOGIC STUDY ON FIBROUS DYSPLASIA OF THE MAXILLOFACIAL REGIONS (악안면 부위에 발생한 섬유성 골이형성증에 대한 임상조직병리학적 연구)

  • PYO, Sung-Woon;Nam, Il-Woo
    • Maxillofacial Plastic and Reconstructive Surgery
    • /
    • v.14 no.1_2
    • /
    • pp.124-134
    • /
    • 1992
  • Fibrous dysplasia is a benign pathologic condition of bone in which fibrous tissue gradually expands and replaces normal bone into fibro-osseous lesion. It is a primary developmental abnormality of bone-forming mesenchyme in origin. This study shows clinical history, radiological and histopathological feature of fibrous dysplasia with the intention of establishing correct diagnosis, treatment plan and evaluation of prognosis. This paper reviews and summarizes the materials from 57 fibrous dysplasias submitted to the Department of Oral and Maxillofacial Surgery in College of Dentistry, Seoul National University. Conclusions obtained were as following : 1. Fibrous dysplasia developed mainly in teenagers and shows female predeliction. 2. Fibrous dysplasia developed much on the maxilla 3. Monostotic fibrous dysplasia was most popular form. 4. Main symptom of fibrous dysplasia was painless swelling. 5. Radiological feature of fibrous dysplasia was ground-glass appearance, 6. Histopathological feature of fibrous dysplasia was irregular immature bony trabeculae(woven bone). 7. Treatment of fibrous dysplasia was mainly conservative contouring surgery.

  • PDF

Feature extraction of medical image using GLCM (GLCM을 이용한 의료영상 특징정보 추출)

  • Park, Yong Sung;Jeong, Su Young;Kim, Wook;Lim, Ilhan;Kang, Joo Hyun;Lim, Sang Moo;Woo, Sang-Keun
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2017.01a
    • /
    • pp.239-240
    • /
    • 2017
  • 본 연구는 의료영상내 특징정보를 추출 및 평가함으로서 정밀의료 실현 가능성을 확인하고자 하였다. 영상화는 PET/CT 및 MRI 스캐너를 이용하여 암환자의 기능적 정보와 해부학적 정보를 획득하고 관심영역을 설정하였으며 각각의 영상내 특징정보를 추출하였다. 영상내 특징정보는 GLCM을 이용하여 에너지, 대비, 엔트로피, 균질성을 획득하였고, 획득된 영상 데이터에 따른 관심영역 설정 차이를 확인하였다. 영상내 특징 정보는 MRI 영상의 해부학적 정보를 이용한 분석결과에서 엔트로피 및 균질성이 PET 보다 증가 하였고 대비는 감소함을 확인하였다. 추후연구는 다양한 영상내 특징 정보를 획득하고 정밀의료를 위한 기계학습에 활용할 예정이다.

  • PDF

Computer Aided Diagnosis Applications for the Differential Diagnosis of Infarction: Apply on Brain CT Image (뇌경색 감별진단을 위한 컴퓨터보조진단 응용: Brain CT Images 적용)

  • Park, Hyong-Hu;Cho, Mun-Joo;Im, In-Chul;Lee, Jin-Soo
    • Journal of the Korean Society of Radiology
    • /
    • v.10 no.8
    • /
    • pp.645-652
    • /
    • 2016
  • In this study, based on the analysis of texture feature values of statistical properties. And we examined the normal and the applicability of the computer-aided diagnosis of cerebral infarction in the brain computed tomography images. The experiment was analyzed to evaluate the ROC curve recognition rate of disease using six parameters representing the feature values of the texture. As a result, it showed average mean 88%, variance 92%, relative smoothness 94%, uniformity of 88%, a high disease recognition rate of entropy 84%. However, it showed a slightly lower disease recognition rate and 58% for skewness. In the analysis using ROC curve, the area under the curve for each parameter indicates 0.886 (p = 0.0001) or more, resulted in a meaningful recognition of the disease. Further, to determine the cut-off values for each parameter are determined to be the prediction of disease through the computer-aided diagnosis.