• Title/Summary/Keyword: Radiological dispersal device

Search Result 4, Processing Time 0.017 seconds

Material attractiveness of unirradiated depleted, natural and low-enriched uranium for use in radiological dispersal device

  • Ahn, Jihyun;Seo, Hee
    • Nuclear Engineering and Technology
    • /
    • v.53 no.5
    • /
    • pp.1652-1657
    • /
    • 2021
  • Nuclear materials can be utilized not only for peaceful uses, but also for military purposes; hence, the international community has devoted itself to the control, management and safeguarding of nuclear materials. Nuclear materials are of varying degrees of usability for development of nuclear weapons. Thus, several methods for assessing the attractiveness of nuclear materials for nuclear weapons purposes have been proposed. When these methods are applied to unirradiated depleted, natural, and low-enriched uranium (DU, NU, and LEU), they are certainly classified as non-attractive nuclear materials. However, when nuclear material attractiveness is to be evaluated for potential radiological dispersal device (RDD) uses, it is required to develop a different method for the different aspects and factors. In the present study, we derived a novel method for evaluating nuclear material attractiveness for use in RDD development. To this end, the specific activity and dose coefficient were identified as the two sub-factors, and, in consideration of those, the mass causing detrimental health effects was determined to be the main factor impacting on nuclear materials attractiveness. Based on this factor, the attractiveness of unirradiated DU, NU, and LEU for RDD use was qualitatively compared with that of 137Cs.

An Intercomparison of Model Predictions for an Urban Contamination Resulting from the Explosion of a Radiological Dispersal Device (도심에서 방사능분산장치의 폭발로 인한 피폭선량 예측결과의 상호비교)

  • Hwang, Won-Tae;Jeong, Hyo-Jun;Kim, Eun-Han;Han, Moon-Hee
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.7 no.1
    • /
    • pp.39-47
    • /
    • 2009
  • The METRO-K is a model for a radiological dose assessment due to a radioactive contamination in the Korean urban environment. The model has been taken part in the Urban Remediation Working Group within the IAEA's (International Atomic Energy Agency) EMRAS (${\mathbf{\underline{E}}}nvironmental$ ${\mathbf{\underline{M}}}odeling$ for ${\mathbf{\underline{RA}}}diation$ ${\mathbf{\underline{S}}}afety$) program. The Working Croup designed for the intercomparison of radioactive contamination to be resulted from the explosion of a radiological dispersal device in a hypothetical city. This paper dealt intensively with a part among a lot of predictive results which had been performed in the EMRAS program. The predictive results of three different models (METRO-K, RESRAD-RDD, CPHR) were submitted to the Working Group. The gap of predictive results was due to the difference of mathemathical modeling approaches, parameter values, understanding of assessors. Even if final results (for example, dose rates from contamintaed surfaces which might affect to a receptor) are similar, the understanding on the contribution of contaminated surfaces showed a great difference. Judging from the authors, it is due to the lack of understanding and information on radioactive terrors as well as the social and cultural gaps which assessors have been experienced. Therefore, it can be known that the experience of assessors and their subjective judgements might be important factors to get reliable results. If the acquisition of a little additional information is possible, it was identified that the METRO-K might be a useful tool for decision support against contamination resulting from radioactive terrors by improving the existing model.

  • PDF

A Study on the X-ray Image Reading of Radiological Dispersal Device (방사능 폭발물의 X-ray 영상판독에 관한 연구)

  • Geun-Woo Jeong;Kyong-Jin Park
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.27 no.2_2
    • /
    • pp.437-443
    • /
    • 2024
  • The purpose of radiological Dispersal Device(RDD) is to kill people by explosives and to cause radiation exposure by dispersing radioactive materials. And It is a form of explosive that combines radioactive materials such as Co-60 and Ir-192 with improvised explosives. In this study, we tested and evaluated whether it was possible to read the internal structure of an explosive using X-rays in a radioactive explosive situation. The improvised explosive device was manufactured using 2 lb of model TNT explosives, one practice detonator, one 9V battery, and a timer switch in a leather briefcase measuring 41×35×10 cm3. The radioactive material used was the Co-60 source used in the low-level gamma ray irradiation device operated at the Advanced Radiation Research Institute of the Korea Atomic Energy Research Institute. The radiation dose used was gamma ray energy of 1.17 MeV and 1.33 MeV from a Co-60 source of 2208 Ci. The dose rates are divided into 0.5, 1, 2, and 4 Gy/h, and the exposure time was divided into 1, 3, 5, and 10 minutes. Co-60 source was mixed with the manufactured explosive and X-ray image reading was performed. As a result of the experiment, the X-ray image appeared black in all conditions divided by dose rate and time, and it was impossible to confirm the internal structure of the explosive. This is because γ-rays emitted from radioactive explosives have higher energy and stronger penetrating power than X-rays, so it is believed that imaging using X-rays is limited By blackening the film. The results of this study are expected to be used as basic data for research and development of X-ray imaging that can read the internal structure of explosives in radioactive explosive situations.

Study on Influence Analysis of Radioactive Terror Scenarios by Weather Conditions (기상조건에 따른 방사능테러 시나리오 영향 분석)

  • Kim, Tae Woo;Jeon, Yeo Ryeong;Chang, Sunyoung;Kim, Yongmin
    • Journal of the Korean Society of Radiology
    • /
    • v.12 no.6
    • /
    • pp.719-725
    • /
    • 2018
  • After 9/11 attacks in the U.S, Terrorism has increased the number of unspecified casualties through multi-use facility terror attacks compared to the past. The subsequent London bombings and the self-destruction of Pakistan increased people's fear and social anxiety. As international events have been held in Korea recently, awareness and concern over radioactive terrorism and security management of radioactive materials are increasing. In this paper, we compared the results of different meteorological conditions using HotSpot Code. After creating a possible terror scenario in Korea, sources likely to be use in RDD and Dirty bomb were investigated. The meteorological condition was selected by comparing the Pasquill-Gifford stability class with the most stable condition F and the most unstable condition A. The result value of the A and F condition through simulation were shown not to cause citizens to die from acute effects due to radiological effects. The range of radioactivity is different according to the wind speed and the meteorological stability, and the degree of radioactivity dilution is different according to meteorological conditions. Analysis results are expected to be used for initial response in the event of a radioactive terrorist attack.