• Title/Summary/Keyword: Radiological Protection

Search Result 421, Processing Time 0.021 seconds

Experimental Evaluation of Scattered X-Ray Spectra due to X-Ray Therapeutic and Diagnosis Equipment for Eye Lens Dosimetry of Medical Staff

  • Kowatari, Munehiko;Nagamoto, Keisuke;Nakagami, Koich;Tanimura, Yoshihiko;Moritake, Takashi;Kunugita, Naoki
    • Journal of Radiation Protection and Research
    • /
    • v.47 no.1
    • /
    • pp.39-49
    • /
    • 2022
  • Background: For proper monitoring of the eye lens dose, an appropriate calibration factor of a dosimeter and information about the mean energies of X-rays are indispensable. The scattered X-ray energy spectra should be well characterized in medical practices where eye lenses of medical staffs might be high. Materials and Methods: Scattered X-ray energy spectra were experimentally derived for three different types of X-ray diagnostic and therapeutic equipment, i.e., the computed tomography (CT) scan, the angiography and the fluoroscopy. A commercially available CdZnTe (CZT) spectrometer with a lead collimator was employed for the measurement of scattered X-rays, which was performed in the usual manner. Results and Discussion: From the obtained energy spectra, the mean energies of the scattered X-rays lied between 40 and 60 keV. This also agreed with that obtained by the conventional half value layer method. Conclusion: The scattered X-rays to which medical workers may be exposed in the region around the eyes were characterized by means of spectrometry. The obtained mean energies of the scattered X-rays were found to match the flat region of the dosimeter response.

Effects of Ionizing Radiation on Plants and the Radiological Protection of the Environment

  • Stanislav A. Geras'kin;Kim, Jin-Kyu
    • Korean Journal of Environmental Biology
    • /
    • v.21 no.4
    • /
    • pp.321-327
    • /
    • 2003
  • Differences between the principles for the radiological protection of man and the environment are compared. The derived levels of exposure for man and biota recommended by the international agencies with dose rates for chronic radiation producing effects at different levels of biological organization were given in terms of the biological effects. Cytogenetic effects on plants after an exposure to ionizing radiation at low doses alone and in combination with other factors are discussed. A wide range of experimental data were analysed and the general conclusions were extracted to cover the topics such as non-linearity of dose response, synergistic and antagonistic effects of the combined exposure of different factors, radiation-induced genomic instability, and the phenomena of radioadaptation.

A Study on the Food Consumption Rates for Off-site Radiological Dose Assessment around Korean Nuclear Power Plants (국내 원자력발전소 주변 주민의 방사선량 평가를 위한 음식물 섭취율 설정 연구)

  • Lee, Gab-Bock;Chung, Yang-Geun
    • Journal of Radiation Protection and Research
    • /
    • v.33 no.4
    • /
    • pp.183-196
    • /
    • 2008
  • The internal dose by food consumption mostly accounts for radiological dose of public around nuclear power plants (NPPs). But, food consumption rates applied to off-site dose calculation in Korea which are the result of field investigation around Kori NPP by the KAERI (Korea Atomic Energy Research Institute) in 1988, are not able to reflect the latest dietary characteristics of Korean. The food consumption rates to be used for radiological dose assessment in Korea are based on the maximum individual of US NRC (Nuclear Regulatory Commssion) Regulatory Guide 1.109. However, the representative individual of the critical group is considered in the recent ICRP (International Commission on Radiological Protection) recommendation and European nations' practice. Therefore, the study on the re-establishment of the food consumption rates for individual around nuclear power plant sites in Korea was carried out to reflect on the recent change of the Korean dietary characteristics and to apply the representative individual of critical group to domestic regulations. The Ministry of Health and Welfare Affairs has investigated the food and nutrition of nations every 3 years based on the Law of National Health Improvement. The statistical data such as mean, standard deviation, various percentile values about food consumption rates to be used for the representative individual of the critical group were analyzed by using the raw data of the national food consumption survey in $2001{\sim}2002$. Also, the food consumption rates for maximum individual are re-estimated.

A Study on Current Status of Detection Technology and Establishment of National Detection Regime against Nuclear/Radiological Terrorism (핵테러/방사능테러 탐지 기술 현황 및 국내 탐지체계 구축 방안에 관한 연구)

  • Kwak, Sung-Woo;Jang, Sung-Soon;Lee, Joung-Hoon;Yoo, Ho-Sik
    • Journal of Radiation Protection and Research
    • /
    • v.34 no.3
    • /
    • pp.115-120
    • /
    • 2009
  • Since 1990s, some events - detection of a dirty bomb in a Russian nation park in 1995, 9/11 terrorist attack to WTC in 2001, discovery of Al-Qaeda's experimentation to build a dirty bomb in 2003 etc - have showed that nuclear or radiological terrorism relating to radioactive materials (hereinafter "radioactive materials" is referred to as "nuclear material, nuclear spent fuel and radioactive source") is not incredible but serious and credible threat. Thus, to respond to the new threat, the international community has not only strengthened security and physical protection of radioactive materials but also established prevention of and response to illicit trafficking of radioactive materials. In this regard, our government has enacted or revised the national regulatory framework with a view to improving security of radioactive materials and joined the international convention or agreement to meet this international trend. For the purpose of prevention of nuclear/radiological terrorism, this paper reviews physical characteristics of nuclear material and existing detection instruments used for prevention of illicit trafficking. Finally, national detection regime against nuclear/radiological terrorism based on paths of the smuggled radioactive materials to terrorist's target building/area, national topography and road networks, and defence-in-depth concept is suggested in this paper. This study should contribute to protect people's health, safety and environment from nuclear/radiological terrorism.

Factors Influencing Protective Behavior against Radiation Exposure of Radiological Technologist in Computed Tomography Examination Room (전산화단층촬영검사실 방사선사의 방사선피폭 방어행위에 영향을 미치는 요인 분석)

  • Kim, Ki-Jeong;Jung, Hong-Ryang;Hong, Dong-Hee
    • Journal of radiological science and technology
    • /
    • v.41 no.6
    • /
    • pp.581-586
    • /
    • 2018
  • This study was conducted to analyze factors Influencing Protective Behavior against Radiation Exposure using questionnaires for 231 radiological technologists working in Computed Tomography(CT) examination room with high radiation dose in diagnostic radiology field. Statistical analysis of the collected data revealed that the reasons for partially shielding the examination part in the CT scan were the lack of protective equipment, securing of radiation justification, being annoying and maybe not being harm to adults in order. It was also revealed that the variables influencing the protective behavior were protective behavior against radiation harm, self-efficacy, protective environment, organization culture, protective knowledge and protective instrument in order. The higher the radiological protective environment(${\beta}=0.245$) and the lower the radiological protective knowledge(${\beta}=-0.034$), the more influential the protective behavior against radiation harm was. In this study, it was shown that non examination parts were not shielded in the CT scan. Therefore, it is necessary to improve the level of protective environment, to cultivate knowledge to improve the protective behavior against radiation harm and to have an intervention strategy for concrete action.

DOSE AND DOSE RATE EFFECTS OF IRRADIATION ON BLOOD COUNT AND CYTOKINE LEVEL IN BALB/c MICE

  • Son, Yeonghoon;Jung, Dong Hyuk;Kim, Sung Dae;Lee, Chang Geun;Yang, Kwangmo;Kim, Joong Sun
    • Journal of Radiation Protection and Research
    • /
    • v.38 no.4
    • /
    • pp.179-184
    • /
    • 2013
  • The biological effects of radiation are dependent on the dose rate and dose of radiation. In this study, effects of dose and dose rate using whole body radiation on plasma cytokines and blood count from male BALB/c mice were evaluated. We examined the blood and cytokine changes in mice exposed to a low (3.49m Gy $h^{-1}$) and high (2.6 Gy $min^{-1}$) dose rate of radiation at a total dose of 0.5 and 2 Gy, respectively. Blood from mice exposed to radiation were evaluated using cytokine assays and complete blood count. Peripheral lymphocytes and neutrophils decreased in a dose dependent manner following high dose rate radiation. The peripheral lymphocytes population remained unchanged following low dose rate radiation; however, the neutrophils population increased after radiation. The sera from these mice exhibited elevated levels of flt3 ligand and granulocyte-colony-stimulating factor (G-CSF), after high/low dose rate radiation. These results suggest that low-dose-rate radiation does not induce blood damage, which was unlike high-dose-rate radiation treatment; low-dose-rate radiation exposure activated the hematopoiesis through the increase of flt3 ligand and G-CSF.

The Development of Automatic Chemical Processing System for $^{67}Ga$ Production ($^{67}Ga$ 생산용 화학처리 자동화 장치 개발)

  • Lee, Dong-Hoon;Kim, Yoon-Jong;Suh, Yong-Sup;Yang, Seung-Dae;Chun, Kwon-Soo;Hur, Min-Goo;Yun, Yong-Ki;Hong, Seung-Hong
    • Journal of Radiation Protection and Research
    • /
    • v.28 no.1
    • /
    • pp.25-33
    • /
    • 2003
  • The automatic system for $^{67}Ga$ production using for the diagnosis of malignant tumor has been developed. A solvent extraction and an ion exchange chromatography were used for the separation $^{67}Ga$ from the irradiated enriched $^{68}Zn$. This system consisted of a solvent separation unit which was composed of micro conductivity cells, air supply tubes, solvent transfer tubes, solenoid valves and glasses, a PLC based controller and a PMU user interface unit for automation. The radiation exposure to the workers and the production time can both be reduced by employing this system during the $^{67}Ga$ production phase. After all, the mass production of $^{67}Ga$ with high efficiency was possible.

Secondary Neutron Dose in Carbon-ion Radiotherapy: Investigations in QST-NIRS

  • Yonai, Shunsuke;Matsumoto, Shinnosuke
    • Journal of Radiation Protection and Research
    • /
    • v.46 no.2
    • /
    • pp.39-47
    • /
    • 2021
  • Background: The National Institutes for Quantum and Radiological Science and Technology-National Institute of Radiological Sciences (QST-NIRS) has continuously investigated the undesired radiation exposure in ion beam radiotherapy mainly in carbon-ion radiotherapy (CIRT). This review introduces our investigations on the secondary neutron dose in CIRT with the broad and scanning beam methods. Materials and Methods: The neutron ambient dose equivalents in CIRT are evaluated based on rem meter (WENDI-II) measurements. The out-of-field organ doses assuming prostate cancer and pediatric brain tumor treatments are also evaluated through the Monte Carlo simulation. This evaluation of the out-of-field dose includes contributions from secondary neutrons and secondary charged particles. Results and Discussion: The measurements of the neutron ambient dose equivalents at a 90#x00B0; angle to the beam axis in CIRT with the broad beam method show that the neutron dose per treatment dose in CIRT is lower than that in proton radiotherapy (PRT). For the scanning beam with the energy scanning technique, the neutron dose per treatment dose in CIRT is lower than that in PRT. Moreover, the out-of-field organ doses in CIRT decreased with distance to the target and are less than the lower bound in intensity-modulated radiotherapy (IMRT) shown in AAPM TG-158 (American Association of Physicists in Medicine Task Group). Conclusion: The evaluation of the out-of-field doses is important from the viewpoint of secondary cancer risk after radiotherapy. Secondary neutrons are the major source in CIRT, especially in the distant area from the target volume. However, the dose level in CIRT is similar or lower than that in PRT and IMRT, even if the contributions from all radiation species are included in the evaluation.

Optimal Monitoring Intervals and MDA Requirements for Routine Individual Monitoring of Occupational Intakes Based on the ICRP OIR

  • Ha, Wi-Ho;Kwon, Tae-Eun;Jin, Young Woo
    • Journal of Radiation Protection and Research
    • /
    • v.45 no.2
    • /
    • pp.88-94
    • /
    • 2020
  • Background: The International Commission on Radiological Protection (ICRP) has recently published report series on the occupational intakes of radionuclides (OIR) for internal dosimetry of radiation workers. In this study, the optimized monitoring program including the monitoring interval and the minimum detectable activity (MDA) of major radionuclides was suggested to perform the routine individual monitoring of internal exposure based on the ICRP OIR. Materials and Methods: The derived recording levels and the critical monitoring quantities were reviewed from international standards or guidelines by the International Atomic Energy Agency (IAEA), the International Organization for Standardization (ISO), and the European Radiation Dosimetry Group (EURADOS). The OIR data viewer provided by ICRP was used to evaluate the monitoring intervals and the MDA, which are derived from the reference bioassay functions and the dose coefficients. Results and Discussion: The optimal monitoring intervals were determined taking account of two requirement conditions on the potential intake underestimation and the MDA values. The MDA requirement values of the selected radionuclides were calculated based on the committed effective dose from 0.1 mSv to 5 mSv. The optimized routine individual monitoring program was suggested including the optimal monitoring intervals and the MDA requirements. The optimal MDA values were evaluated based on the committed effective dose of 0.1 mSv. However, the MDA can be adjusted considering the practical operation of the routine individual monitoring program in the nuclear facilities. Conclusion: The monitoring intervals and the MDA as crucial factors for the routine monitoring were described to suggest the optimized routine individual monitoring program of the occupational intakes. Further study on the alpha/beta-emitting radionuclides as well as short lived gamma-emitting nuclides will be necessary in the future.

Radiation-Induced IL(interleukin)-6 in Mice with Algin-Oligosaccharide Treatment (알긴산올리고당 처치 마우스의 방사선 유도 IL-6)

  • Choi, Seong-Kwan;Ji, Youn-Sang
    • Journal of radiological science and technology
    • /
    • v.33 no.4
    • /
    • pp.321-326
    • /
    • 2010
  • To examine the radioprotective effect of algin-oligosaccharide(AOS), radiation-induced IL(interleukin)-6 in mice treated with 3 Gy whole body irradiation once were examined. In the measurement of irradiation-induced IL-6, in comparison with the irradiation control group, in both small intestine and liver tissues of the group treated with algin-oligosaccharide for 7 days prior to irradiation, was suppressed IL-6 synthesis(p < 0.001). It is considered that the protection against radiation hazard by antioxydative reaction of algin-oligosaccharide results in down control of IL-6 value in experimental groups treated with algin-oligosaccharide. In conclusion, through our study, the fact that algin-oligosaccharide has irradiation protection effects was elucidated, and simultaneously, the possibility of the use of a natural product without chemical toxicity as an irradiation protection agent was confirmed.