• Title/Summary/Keyword: Radiological Effects

Search Result 588, Processing Time 0.034 seconds

The Radioprotective Effects of Grifola umbellata Hot Water Extract on Mice (저령(Grifola umbellata)의 열수 추출물이 생쥐에 미치는 방사선 방호 효과)

  • Park, Jun-Chul
    • Journal of radiological science and technology
    • /
    • v.28 no.4
    • /
    • pp.333-340
    • /
    • 2005
  • In this study, the radioprotective effects of Grifola umbellata hot water extracts (Gu-extract) on mice were investigated. Single pre-administration of Gu-extract increased the 40-day survival ratio of irradiated mice from 65.5% to 78.6%. The growth of 3 week old male mice in the irradiated group was slightly retarded as compared to those of the control and Gu-extract treated mice. The average spleen and thymus weights of the irradiated mice were lower than those of the control and Gu-extract treated mice. The weight reduction of testis in the irradiated mice was significant. While it was relatively slight in the Gu-extract treated mice as compared to that of control mice. No significant difference in the weight was observed in heart, kidney or liver among three groups. The leukocytes of the Gu-extract treated mice did not decrease dramatically as in the irradiated group, but recovery patterns were similar in both groups. Reduction of erythrocytes were similar in both groups but its recovery occurred more rapidly in the extract treated group. The glucose level of the Gu-extract treated group did not change during the period examined, while it was still higher in the irradiated group than the level in the control group in two weeks. The cholesterol levels in the irradiated and the Gu-extract treated groups were higher than that of control group on day 7, but decreased to the level of the control group on day 14. No difference was observed in total protein amount of the serum among the three groups. SDS-polyacrylamide gel electrophoresis of the soluble proteins extracted from various organs did not reveal differences to any extent in all groups except in the livers of the irradiated and extract treated groups, in which some proteins were missing or less present.

  • PDF

Radioprotective Effects of Aronia on Radiation Irradiated Rats (방사선에 조사된 쥐에서 아로니아의 방사선 방호효과)

  • Mun, Hwan-Sik;Lee, Jun-Haeng
    • Journal of radiological science and technology
    • /
    • v.40 no.3
    • /
    • pp.423-431
    • /
    • 2017
  • The present study was intended to orally administer aronia to rats, irradiate radiation once to the whole bodies of the rats, and conduct blood tests to observe, compare, and analyze changes in blood cells, such as leukocytes, erythrocytes, and platelets, in order to examine the radioprotective effects of aronia. As experimental animals, 15 male Sprague-Dawley (SD) rats aged six weeks weighing 200~250 g were taken and divided into the normal group (A) of five rats, the 5 Gy control group (B) of five rats, and the 5 Gy experimental group (C) of five rats. The normal group (A) was not~irradiated at all, the control group (B) was administered with general diets and irradiated, and the experimental group(C) was orally administered with 50 mg/kg/day of aronia two times per day to achieve a distilled water oral dose of 100 mg/kg/day and irradiated thereafter (5 Gy at 500 cGy/min) for 14 days. After the experiment, differences in leukocytes, erythrocytes, and platelets among the normal group (A), the control group (B), and the experimental group (C) were examined by comparing the counts of the blood cells and the results showed no statistically significant differences. However, on a detailed review, the normal group (A) showed statistically higher mean values for all of lymphocytes, hemoglobin, and mean corpuscular hemoglobin as compared to the control group (B) and the experimental group (C). Statistically significant differences in the counts of lymphocytes were shown between the normal group (A) and the control group (B), and between the normal group (A) and the experimental group (C); furthermore, statistically significant differences in mean corpuscular hemoglobin were shown between the normal group (A) and the experimental group (C). Given the results of the present study, in irradiated rats, aronia was generally considered as having no radioprotective effect on leukocyte, erythrocyte, and platelet while having statistically significant radioprotective effects on lymphocytes, hemoglobin, and mean corpuscular hemoglobin. Based on the present experiment, diverse studies should be conducted hereafter.

The Degree of Requirements for Retirement Preparation and the Effect of Retirement Preparation on Quality of Life: The Moderated Mediating Effect of the Degree of Participation in Retirement Education (은퇴준비필요도와 은퇴준비가 삶의 질에 미치는 영향 : 은퇴교육참여도의 조절된 매개효과)

  • Park, Hae-Ri;Min, Hyun-Jung
    • Journal of radiological science and technology
    • /
    • v.40 no.4
    • /
    • pp.647-655
    • /
    • 2017
  • This study was conducted to review the mediating effects of retirement preparation in how the degree of requirements for retirement education and the degree of preparation for retirement education affects quality of life, and how the degree of participation in retirement education which is a moderating variable is moderated. The study findings show that first, in terms of the difference in quality of life across different general characteristics, those who live in a city rather than a Gun, those who had received education of graduate school or higher rather than those with an education of undergraduate university programs or lower, those who were public officers or employees of corporations rather than those who were self-employed had a higher quality of life. The group satisfied with their economic status and health status were found to be more satisfied with their quality of life. Second, a correlation analysis showed that there was a positive correlation between retirement preparation, quality of life, and degree of requirements for retirement preparation. Moreover, there was also a positive correlation between quality of life, retirement education and the degree of requirements for retirement education. There was a positive correlation between retirement education and the degree of requirements for retirement preparation. Third, participation in retirement education moderated the indirect effect that the degree of preparation for retirement education affected quality of life through the degree of retirement preparation. In other words, the degree of requirements for retirement education affects retirement preparation and affects quality of life through the indirect effects of retirement education. As such, the moderated mediating effects of retirement education on retirement preparation was found to be greater. This indicates that quality of life may also vary in accordance with the requirements for retirement education.

The Study of Error for Analysis in Dynamic Image from the Error of Count Rates in NaI (Tl) Scintillation Camera (NaI (Tl) 신틸레이션 카메라에서 계수율 오차에 따른 동적 영상 분석치 산출 오류에 관한 연구)

  • Oh, Joo-Young;Kang, Chun-Goo;Kim, Jung-Yul;Park, Hoon-Hee;Oh, Ki-Baek;Kim, Jae-Sam
    • Journal of radiological science and technology
    • /
    • v.36 no.4
    • /
    • pp.291-297
    • /
    • 2013
  • This study is aimed to evaluate the effect of $T_{1/2}$ upon count rates in the analysis of dynamic scan using NaI (Tl) scintillation camera, and suggest a new quality control method with this effects. We producted a point source with $^{99m}TcO_4^-$ of 18.5 to 185 MBq in the 2 mL syringes, and acquired 30 frames of dynamic images with 10 to 60 seconds each using Infinia gamma camera (GE, USA). In the second experiment, 90 frames of dynamic images were acquired from 74 MBq point source by 5 gamma cameras (Infinia 2, Forte 2, Argus 1). There were not significant differences in average count rates of the sources with 18.5 to 92.5 MBq in the analysis of 10 to 60 seconds/frame with 10 seconds interval in the first experiment (p>0.05). But there were significantly low average count rates with the sources over 111 MBq activity at 60 seconds/frame (p<0.01). According to the second analysis results of linear regression by count rates of 5 gamma cameras those were acquired during 90 minutes, counting efficiency of fourth gamma camera was most low as 0.0064%, and gradient and coefficient of variation was high as 0.0042 and 0.229 each. We could not find abnormal fluctuation in $x^2$ test with count rates (p>0.02), and we could find the homogeneity of variance in Levene's F-test among the gamma cameras (p>0.05). At the correlation analysis, there was only correlation between counting efficiency and gradient as significant negative correlation (r=-0.90, p<0.05). Lastly, according to the results of calculation of $T_{1/2}$ error from change of gradient with -0.25% to +0.25%, if $T_{1/2}$ is relatively long, or gradient is high, the error increase relationally. When estimate the value of 4th camera which has highest gradient from the above mentioned result, we could not see $T_{1/2}$ error within 60 minutes at that value. In conclusion, it is necessary for the scintillation gamma camera in medical field to manage hard for the quality of radiation measurement. Especially, we found a tendency that count rate changes over time at this study, and we proved that it can effect $T_{1/2}$. And also, there is need of appropriate phantoms and the method of quality management like this study, because there are not any advice or limitation degrees for domestic medical purpose scintillation camera.

Effect of Automatic Exposure Control Marker with Chest Radiography in Radiation Reduction (자동노출제어를 사용한 X선 흉부촬영에서 AEC 표지자 사용에 따른 환자 피폭선량 감소 효과)

  • Jung, Ji-Sang;Choi, Byoung-Wook;Kim, Sung-Ho;Kim, Young-Mo;Shim, Ji-Na;Ahn, Ho-Sik;Jin, Duk-Eun;Lim, Jae-Sik;Kang, Sung-Ho
    • Journal of radiological science and technology
    • /
    • v.37 no.3
    • /
    • pp.177-185
    • /
    • 2014
  • This study focused on effects of patient exposure dose reduction with AEC (Auto Exposure Control) marker that is designed for showing location of AEC in X-ray Chest radiography. It included 880 adults who have to use Chest X-ray Digital Radiography system (DRS, LISTEM, Korea). AEC (Ion chambers are posited in top of both sides) are used to every adult and set X-ray system as Field size $17{\times}17inch$, 120kVp, FFD 180cm. 440 people of control group are posited on detector to include both sides of lung field and the other 440 people of experimental group are set to contact their lung directly to Ion chamber (making marker to shows location). Then, measured every DAP and, estimated patient effective dose by using PCXMC 2.0. The average age of control group (M:F=245:195) is 53.9 and the average BMI is 23.4. BMI ranges from under weight: 35, normal range: 279, over weight: 106 to obese: 20 and average DAP is 223.56mGycm2, Mean effective dose is 0.045mSv. The average age of experimental group (M:F=197:243) is 53.7 and the average BMI is 22.7. BMI ranges from under weight: 34, normal range: 315, over weight: 85 to obese: 6 and average DAP is 207.36mGycm2, Mean effective dose is 0.041mSv. Experimental group shows less Mean effective dose as 0.004mSv (9.7%) than control group. Also, patient numbers who got over exposure more than 0.056mSv (limit point to know efficiency of AEC marker) is 65 in control group (14.7%), 19 in experimental group (4.3%) and take statistics with t-Test. The statistical difference between two groups is 0.006. In order to use proper amount of X-ray in auto exposure controlled chest X-ray system, matching location between ion chamber and body part is needed, and using AEC marker (designed for showing location of ion chamber) is a way to reduce unnecessary patient exposure dose.

Accurate Quality Control Method of Bone Mineral Density Measurement -Focus on Dual Energy X-ray Absorptiometry- (골밀도 측정의 정확한 정도관리방법 -이중 에너지 방사선 흡수법을 중심으로-)

  • Kim, Ho-Sung;Dong, Kyung-Rae;Ryu, Young-Hwan
    • Journal of radiological science and technology
    • /
    • v.32 no.4
    • /
    • pp.361-370
    • /
    • 2009
  • The image quality management of bone mineral density is the responsibility and duty of radiologists who carry out examinations. However, inaccurate conclusions due to lack of understanding and ignorance regarding the methodology of image quality management can be a fatal error to the patient. Therefore, objective of this paper is to understand proper image quality management and enumerate methods for examiners and patients, thereby ensuring the reliability of bone mineral density exams. The accuracy and precision of bone mineral density measurements must be at the highest level so that actual biological changes can be detected with even slight changes in bone mineral density. Accuracy and precision should be continuously preserved for image quality of machines. Those factors will contribute to ensure the reliability in bone mineral density exams. Proper equipment management or control methods are set with correcting equipment each morning and after image quality management, a phantom, recommended from the manufacturer, is used for ten to twenty-five measurements in search of a mean value with a permissible range of ${\pm}1.5%$ set as standard. There needs to be daily measurement inspections on the phantom or at least inspections three times a week in order to confirm the existence or nonexistence of changes in values in actual bone mineral density. in addition, bone mineral density measurements were evaluated and recorded following the rules of Shewhart control chart. This type of management has to be conducted for the installation and movement of equipment. For the management methods of inspectors, evaluation of the measurement precision was conducted by testing the reproducibility of the exact same figures without any real biological changes occurring during reinspection. Bone mineral density inspection was applied as the measurement method for patients either taking two measurements thirty times or three measurements fifteen times. An important point when taking measurements was after a measurement whether it was the second or third examination, it was required to descend from the table and then reascend. With a 95% confidence level, the precision error produced from the measurement bone mineral figures came to 2.77 times the minimum of the biological bone mineral density change. The value produced can be stated as the least significant change (LSC) and in the case the value is greater, it can be stated as a section of genuine biological change. From the initial inspection to equipment moving and shifter, management must be carried out and continued in order to achieve the effects. The enforcement of proper quality control of radiologists performing bone mineral density inspections which brings about the durability extensions of equipment and accurate results of calculations will help the assurance of reliable inspections.

  • PDF

The Effects of Image Quality due to Scattering X-ray according to increasing Patient Thickness (피사체 두께에 따른 산란선 발생이 화질에 미치는 영향)

  • Park, Ji-Koon;Yang, Sung-Woo;Jun, Jae-Hoon;Cho, Su-Yeon;Kim, Kyo-Tae;Heo, Ye-Ji;Kang, Sang-Sik
    • Journal of the Korean Society of Radiology
    • /
    • v.11 no.7
    • /
    • pp.671-677
    • /
    • 2017
  • In this study, scattering factors affecting the quality of medical images were quantitatively analyzed and investigated. MCNPX simulation was conducted by using ANSI phantom, made of tissue equivalent materials, to calculate the scattering ratio occurred by the increase of the object thickness. Then, the result of the simulation was compared with the result of actual radiation measurement. In addition, we evaluated the image quality by the RMS evaluation, RSD and NPS analysis using X-ray images acquired with increasing object thickness. Furthermore, the scattering ratio was analyzed by increasing the thickness of acrylic phantom on chest phantom. The result showed that the scattering ratio was increased to 57.2%, 62.4%, and 66.8% from 48.9%, respectively, when the acrylic phantom thickness was increased by 1 inch from 6.1 inches. The results of MCNPX simulation and the actual measured scattering dose showed similar results. Also, as a result of RMS measurement from acquired x-ray images, the standard deviation decreased as the object thickness increased. However, in the RSD analysis considering the average incident dose, the results were increased from 0.028 to 0.039, 0.051, 0.062 as the acrylic phantom thickness was increased from 6.1 inches to 7.1 inch, 8.1 inch, and 9.1 inch, respectively. It can be seen that the increase of the scattering effect due to the increase of the object thickness reduces the SNR. Also, the NPS results obtained by measuring scattered radiation incident on the detector resulted in the increase of the noise as the object thickness increased.

Evaluation of Attenuation Rate Error on Skin Dosimeter using Monte Carlo Simulation in Photon and Electron Beam Therapy (광자선 및 전자선 치료에서 피부선량계의 측정과 시뮬레이션을 이용한 감약률 오차 평가)

  • Han, Moo-Jae;Yang, Seung-Woo;Heo, Seung-Uk;Bae, Sang-Il;Moon, Young-Min;Park, Sung-Kwang;Kim, Jin-Young
    • Journal of the Korean Society of Radiology
    • /
    • v.14 no.6
    • /
    • pp.841-848
    • /
    • 2020
  • In the field of radiation therapy using photon beams and electron beams, since each patient has a different sensitivity to radiation, skin side effects may occur even at the same dose. Therefore, if there is a risk of excessive dose to the skin, a dosimeter is attached to verify whether the correct dose is being investigated. However, since the skin dosimeter checks the attachment site visually by measuring a point dose, it is difficult to confirm an accurate dose distribution. As a result, the measurement and simulation errors of the material HgI2 in the 6 MV photon beam were 3.73% and 5.24%, respectively, at the minimum thickness of 25 ㎛, and the material PbI2 was 4.73% and 5.65%, respectively. On the other hand, as a result of the 6 MeV electron beam, the measurement and simulation errors of the material HgI2 were 1.35% and 1.12%, respectively, at a minimum thickness of 25 ㎛, and the material PbI2 showed relatively low attenuation error, 1.67% and 1.20%, respectively. Therefore, it was evaluated that the thickness of the photon beam within 25 ㎛ and the electron beam within 100 ㎛ is suitable to have a reduction rate error within 5%. This study presents a new research direction for a flexible dosimeter attached to the human body that is required in clinical practice and the construction conditions of a future skin dosimeter.

The Effect of Low-Intensity Pulsed Ultrasound on Fracture Healing in the Rabbit Model (토끼모델에서 저강도 맥동초음파가 골절치유에 미치는 영향)

  • Kim, Jong-Man;Yi, Chung-Hwi;Cho, Sang-Hyun;Park, Jung-Mi;Kwon, Hyuk-Cheol;Hwang, Tae-Sun
    • Physical Therapy Korea
    • /
    • v.9 no.1
    • /
    • pp.81-96
    • /
    • 2002
  • The purpose of this research was to determine the effects on the healing of fibular fractures in rabbits of low-intensity pulsed ultrasound (50 $mW/cm^2$ and 500 $mW/cm^2$) applied for periods of 4, 14 and 24 days following fibular osteotomy. Thirty-six male Japanese white rabbits were randomly divided into three groups of twelve for three treatment protocols: (1) ultrasound treatment at intensities of 50 $mW/cm^2$ and 500 $mW/cm^2$ until the 4th day following fibular osteotomy, (2) ultrasound treatment at intensities of 50 $mW/cm^2$ and 500 $mW/cm^2$ until the 14th day following fibular osteotomy, and (3) ultrasound treatment at intensities of 50 $mW/cm^2$ and 500 $mW/cm^2$ until the 24th day following fibular osteotomy. The low-intensity pulsed ultrasound was applied to only one fibula of each rabbit (these served as the experimental group). The other fibula of each rabbit served as the control group. The selection of which fibula was to be treated was made randomly. The animals were sacrificed on the 4th, 14th and 24th day after the start of ultrasound treatments. Percent of trabecular bone area and fibular radiography were carried out to compare the degree of fibular bone healing. A microscope was also used to determine any histologic changes. For statistical differences in radiological changes due to length of treatment period (4, 14 and 24 days respectively), the Wilcoxon signed-ranks test was used to compare the experimental and control groups. For statistical differences in fracture healing due to differences in ultrasound intensity, radiological studies were compared using the Mann-Whitney Test. And, to compute percentage differences in areas of trabecular bone, Two-way analysis of variance (ultrasound intensity x each group) was used. Experiment results were as follows: 1. In animals sacrificed on the 4th day, no difference was found in the radiological studies of the fibulae in the experimental and control groups (p>.05). However, experimental groups showed more rapid bone repair than control group. 2. Both radiographic and percent of trabecular bone area studies showed significant differences in rabbits sacrificed after 14 days. Fracture healing was significantly increased in the experimental group (p<.05) 3. In the animals sacrificed on the 24th day, histologic study showed rapid bone repair but fibular radiologic studies did not show statistical differences between the two groups (p>.05). 4. On the 14th day, bone union on radiograph was significantly more rapid in the treatment group with pulsed ultrasound of 50 $mW/cm^2$ than the group with 500 $mW/cm^2$ (p<.05). Histologic studies showed that both the 14 and 24 days groups had more rapid bone repair in animals treated with 50 $mW/cm^2$ ultrasound intensity than those treated with 500 $mW/cm^2$ intensity. In conclusion, it has been shown that the low-intensity pulsed ultrasound has a positive effect on bone fracture healing in the early stage and the range of pulse ultrasound from 50 $mW/cm^2$ to 500 $mW/cm^2$ is effective for fracture healing. Further study is needed to investigate the influence of pulsed ultrasound on delayed union and non-union in bone fractures and also for the clinical use of low-intensity pulsed ultrasound for bone healing in humans.

  • PDF

Evaluation of Roadmap Image Quality by Parameter Change in Angiography (혈관조영검사에서 매개변수 변화에 따른 Roadmap 영상의 화질평가)

  • Kong, Chang gi;Song, Jong Nam;Han, Jae Bok
    • Journal of the Korean Society of Radiology
    • /
    • v.14 no.1
    • /
    • pp.53-60
    • /
    • 2020
  • The purpose of this study is to identify factors affecting picture quality in Roadmap images, which were studied by varying the dilution rate, collimation field and flow rate of contrast medium. For a quantitative evaluation of the quality of the picture, a 3mm vessel model Water Phantom was self-produced using acrylic, a roadmap image was acquired with a self-produced vascular model Water Phantom, and the SNR(Signal to Noise Ratio) and CNR (Contrast to Noise Ratio) were analyzed. CM:N/S In the study on the change of dilution rate, CM:N/S dilution rate changed to (100%~10%:100%), and the measurement of the roadmap image taken using the vascular model Water Phantom showed that the measurement value of SNR gradually decreased as the N/S dilution rate was increased, and the measurement of CNR was gradually reduced. It was confirmed that the higher the dilution rate of CM:N/S, the lower the SNR and CNR, and also significant image can be obtained at the dilution rate of CM:N/S (100%~70:30%). The study showed the value of SNR and CNR in Roadmap image was increased as the Collimation Field was narrowed to the center of the vascular phantom; the Collimation Field was narrowed to the center of the vessel model by 2cm intervals to 0cm through 12cm. To verify the relationship with Roadmap image and Flow Rate, volume of the autoinjector was kept constant at 15 and the flow rate was gradually increased 1, 2, 3, 4, 5, 6, 7, 8, 9, 10. The value of SNR and CNR of images taken by using water Phantom gradually decreased as the Flow Rate increased, but at Flow Rate 9 and 10, the SNR and CNR value was increase. It was not possible to confirm the relationship with SNR and CNR by ROI mean value and Background mean value. It is considered that further study is needed to evaluate the correlation about Roadmap image and Flow Rate. In conclusion, as the dilution rate of N/S in contrast medium was increased, the value of SNR and CNR was decreased. The narrower the Collimation Field, the higher image quality by increasing value of SNR and CNR. However, it is not confirmed the relationship Roadmap image and Flow Rate. It is considered that appropriate contrast medium concentration to minimize the effects of kidney and proper Collimation Field to improve contrast of image and reduce exposure X-ray during procedure is needed.