• 제목/요약/키워드: Radiological Effects

검색결과 588건 처리시간 0.032초

N-Acetylphytosphingosine Enhances the Radiosensitivity of Lung Cancer Cell Line NCI-H460

  • Han, Youngsoo;Kim, Kisung;Shim, Ji-Young;Park, Changsoe;Song, Jie-Young;Yun, Yeon-Sook
    • Molecules and Cells
    • /
    • 제25권2호
    • /
    • pp.224-230
    • /
    • 2008
  • Ceramides are well-known second messengers that induce apoptosis in various kinds of cancer cells, and their effects are closely related to radiation sensitivity. Phytoceramides, the yeast counterparts of the mammalian ceramides, are also reported to induce apoptosis. We investigated the effect of a novel ceramide derivative, N-acetylphytosphingosine (NAPS), on the radiosensitivity of NCI-H460 human lung carcinoma cells and its differential cytotoxicity in tumor and normal cells. The combination of NAPS with radiation significantly increased clonogenic cell death and caspase-dependent apoptosis. The combined treatment greatly increased Bax expression and Bid cleavage, but not Bcl-2 expression. However, there was no effect on radiosensitivity and apoptosis in BEAS2B cells, which derive from normal human bronchial epithelium. Cell proliferation and DNA synthesis were significantly inhibited by NAPS in both NCI-H460 and BEAS2B cells, but only the BEAS2B cells recovered by 48h after removal of the NAPS. Furthermore, the NCI-H460 cells underwent more DNA fragmentation than the BEAS2B cells in response to NAPS. Our results indicate that NAPS may be a potential radiosensitizing agent with differential effects on tumor vs. normal cells.

Comparison of Skin Injury Induced by β- and γ-irradiation in the Minipig Model

  • Kim, Joong-Sun;Jang, Hyosun;Bae, Min-Ji;Shim, Sehwan;Jang, Won-Seok;Lee, Sun-Joo;Park, Sunhoo;Lee, Seung-Sook
    • Journal of Radiation Protection and Research
    • /
    • 제42권4호
    • /
    • pp.189-196
    • /
    • 2017
  • Background: The effects of radiation on tissues vary depending on the radiation type. In this study, a minipig model was used to compare the effects of ${\beta}$-rays from $^{166}Ho$ and ${\gamma}$-rays from $^{60}Co$ on the skin. Materials and Methods: In this study, the detrimental effects of ${\beta}$- and ${\gamma}$-irradiation on the skin were assessed in minipigs. The histopathological changes in the skin from 1 to 12 weeks after exposure to 50 Gy of either ${\beta}$- (using $^{166}Ho$ patches) or ${\gamma}$- (using $^{60}Co$) irradiation were assessed. Results and Discussion: The skin irradiated by ${\beta}$-rays was shown to exhibit more severe skin injury than that irradiated by ${\gamma}$-rays at 1-3 weeks post-exposure; however, while the skin lesions caused by ${\beta}$-rays recovered after 8 weeks, the ${\gamma}$-irradiated skin lesions were not repaired after this time. The observed histopathological changes corresponded with gross appearance scores. Seven days post-irradiation, apoptotic cells in the basal layer were detected more frequently in ${\beta}$-irradiated skin than in ${\gamma}$-irradiated skin. The basal cell density and skin thickness gradually decreased until 4 weeks after ${\gamma}$- and ${\beta}$- irradiation. In ${\beta}$-irradiated skin lesions, and the density and thickness increased sharply back to control levels by 6-9 weeks. However, this was not the case in ${\gamma}$-irradiated skin lesions. In ${\gamma}$-irradiated skin, cyclooxygenase-2 (COX-2) was shown to be expressed in the epidermis, endothelial cells of vessels, and fibroblasts, while ${\beta}$-irradiated lesions exhibited COX-2 expression that was mostly limited to the epidermis. Conclusion: In this study, ${\beta}$-rays were shown to induce more severe skin injury than ${\gamma}$-rays; however, the ${\beta}$-rays-induced injury was largely repaired over time, while the ${\gamma}$-rays-induced injury was not repaired and instead progressed to necrosis. These findings reveal the differential effects of ${\gamma}$- and ${\beta}$-irradiation on skin and demonstrate the use of minipigs as a beneficial experimental model for studying irradiation-induced skin damage.

Activity concentrations and radiological hazard assessments of 226Ra, 232Th, 40K, and 137Cs in soil samples obtained from the Dongnam Institute of Radiological & Medical Science, Korea

  • Jieun Lee;HyoJin Kim;Yong Uk Kye; Dong Yeon Lee;Wol Soon Jo;Chang Geun Lee;Jeung Kee Kim;Jeong-Hwa Baek;Yeong-Rok Kang
    • Nuclear Engineering and Technology
    • /
    • 제55권7호
    • /
    • pp.2388-2394
    • /
    • 2023
  • The radioactivity concentration of environmental radionuclides was analyzed for soil and sand at eight locations within a radius of 255 m centered on the Dongnam Institute of Radiological & Medical Science (DIRAMS), Korea. The average activity concentrations of 40K, 137Cs, 226Ra, and 232Th were 661.1 Bq/kg-dry, 0.9 Bq/kg-dry, 21.9 Bq/kg-dry, and 11.1 Bq/kg-dry, respectively. The activity of 40K and 137Cs was lower than the 3-year (2017-2019) average reported by the Korea Institute of Nuclear Safety, respectively. Due to the nature of granite-rich soil, the radioactivity of 40K was 0.6-fold higher than in other countries, while 137Cs was in the normal fluctuation range (15-30 Bq/kg-dry) of the concentration of radioactive fallout from nuclear tests. The activity of 226Ra and 232Th was lower than in Korean soils reported by the United Nations Scientific Committee on the Effects of Atomic Radiation (UNSCEAR). The average activity concentrations of 232Th and 40K for the soil and sand samples from DIRAMS were within the range specified by UNSCEAR in 2000. The radium equivalent activity and internal and external hazard index values were below the recommended limits (1 mSv/y). These radionuclide concentration (226Ra, 232Th, 40K, and 137Cs) data can be used for regional environmental monitoring and ecological impact assessments of nuclear power plant accidents.

A study of the radioprotection effect of guarana (Paullinia cupana) on the fetuses of ICR mice THE RADIATION PROTECTION EFFECTS OF GUARANA

  • Gu, Yeun-Hwa;Hasegawa, Takeo;Suzuki, Ikukatsu;Yamamoto, Youichi;Yoon, Yeog-Byung;Rhee, Soo-Yong
    • Journal of Radiation Protection and Research
    • /
    • 제26권4호
    • /
    • pp.347-356
    • /
    • 2001
  • Guarana, a tropical plant is found in powdered for in health food and is very popular soft drink in Brazil as an energy feaster with its high caffeine contents. We examined its radioprotection effects during organogenesis stages of ICR mice by malformations rate and cellular lead 8 the embryo by radiation and analyzed the mechanism of the radioprotection effects in the fetal of ICR mice. The results of this study showed that Guarana reduced clearly the embryonic death rate and teratogenesis rate by radiation. Its radioprotection effect inject be related with its radioprotection effect might be related with its antioxidant effect or free radical scavenger. We need to exposure the Guarana as a potential radioprotection agent. Therefore, we investigated about radiation effects by Guarana using to mice experiments in this paper.

  • PDF

Preparation of 125

  • Kim, Byoung-Soo;Kim, Eun-Jung;Lee, Hae-June;Han, Sang-Jin;Choi, Tae-Hyun;Lee, Yun-Sil;Cheon, Gi-Jeong
    • Bulletin of the Korean Chemical Society
    • /
    • 제31권9호
    • /
    • pp.2649-2655
    • /
    • 2010
  • $PKC{\delta}$-catalytic V5 Heptapeptide (FEQFLDI, FP7) interacts with heat shock protein 27 (HSP27) and inhibits HSP27-mediated resistance to cell death against various stimuli including radiation therapy. Here, we prepared radio-iodinated heptapeptide and further investigated its uptake properties in HSP27 expression cells. Peptide sequence of FP7 and a negative control peptide (WSLLEKR, QP7) was modified by substituting their C-terminus residue to tyrosine (FP6Y and QP6Y) to label radio-iodine. Iodinated peptides were confirmed by LC mass analysis with cold iodine reaction mixture. Accumulation of [$^{125}I$]iodo-FP6Y and [$^{125}I$]iodo-QP6Y in NCI-H1299 cell line, with higher level of HSP27, and NCI-H460 cell line, with lower level of HSP27, was measured by NaI(Tl) scintillation counter. The modification of substituting C-terminus residue of FP7 to tyrosine (FP6Y) did not affect its interaction with HSP27. Accumulation of [$^{125}I$]iodo-FP6Y in NCI-H1299 cells was 3 fold higher than in NCI-H460 cells. The novel radio-iodinated FP6Y would be used as a tracer for targeting HSP27 protein.

Real-time monitoring of ultra-high dose rate electron beams using bremsstrahlung photons

  • Hyun Kim;Dong Hyeok Jeong;Sang Koo Kang;Manwoo Lee;Heuijin Lim;Sang Jin Lee;Kyoung Won Jang
    • Nuclear Engineering and Technology
    • /
    • 제55권9호
    • /
    • pp.3417-3422
    • /
    • 2023
  • Recently, as the clinically positive biological effects of ultra-high dose rate (UHDR) radiation beams have been revealed, interest in flash radiation therapy has increased. Generally, FLASH preclinical experiments are performed using UHDR electron beams generated by linear accelerators. Real-time monitoring of UHDR beams is required to deliver the correct dose to a sample. However, it is difficult to use typical transmission-type ionization chambers for primary beam monitoring because there is no suitable electrometer capable of reading high pulsed currents, and collection efficiency is drastically reduced in pulsed radiation beams with ultra-high doses. In this study, a monitoring method using bremsstrahlung photons generated by irradiation devices and a water phantom was proposed. Charges collected in an ionization chamber located at the back of a water phantom were analyzed using the bremsstrahlung tail on electron depth dose curves obtained using radiochromic films. The dose conversion factor for converting a monitored charge into a delivered dose was determined analytically for the Advanced Markus® chamber and compared with experimentally determined values. It is anticipated that the method proposed in this study can be useful for monitoring sample doses in UHDR electron beam irradiation.

Assessment of Radiological Hazards in Some Foods Products Consumed by the Malian Population Using Gamma Spectrometry

  • Adama Coulibaly;David O. Kpeglo;Emmanuel O. Darko
    • Journal of Radiation Protection and Research
    • /
    • 제48권2호
    • /
    • pp.84-89
    • /
    • 2023
  • Background: Food consumption is one of the most important routes for radionuclide intake for the public; therefore, there is the need to have a comprehensive understanding of the amount of radioactivity in food products. Consumption of radionuclide-contaminated food could increase potential health risks associated with exposure to radiation such as cancers. The present study aims to determine radioactivity levels in some food products (milk, rice, sugar, and wheat flour) consumed in Mali and to evaluate the radiological effect on the public health from these radionuclides. Materials and Methods: The health impact due to ingestion of radionuclides from these foods was evaluated by the determination of activity concentration of radionuclides 238U, 232Th, 40K, and 137Cs using gamma spectrometry system with high-purity germanium detector and radiological hazards index in 16 samples collected in some markets, mall, and shops of Bamako-Mali. Results and Discussion: The average activity concentrations were 9.8±0.6 Bq/kg for 238U, 8.7±0.5 Bq/kg for 232Th, 162.9±7.9 Bq/kg for 40K, and 0.0035±0.0005 Bq/kg for 137Cs. The mean values of radiological hazard parameters such as annual committed effective dose, internal hazard index, and risk assessment from this work were within the dose criteria limits given by international organizations (International Commission on Radiological Protection and United Nations Scientific Committee on the Effects of Atomic Radiation) and national standards. Conclusion: The results show low public exposure to radioactivity and associated radiological impact on public health. Nevertheless, this study stipulates vital data for future research and regulatory authorities in Mali.

Ginsenoside-Rp1 inhibits radiation-induced effects in lipopolysaccharide-stimulated J774A.1 macrophages and suppresses phenotypic variation in CT26 colon cancer cells

  • Baik, Ji Sue;Seo, You Na;Yi, Joo Mi;Rhee, Man Hee;Park, Moon-Taek;Kim, Sung Dae
    • Journal of Ginseng Research
    • /
    • 제44권6호
    • /
    • pp.843-848
    • /
    • 2020
  • This study investigated the inhibitory effect of ginsenoside-Rp1 (G-Rp1) on the ionizing radiation (IR)-induced response in lipopolysaccharide (LPS)-stimulated macrophages and its effects on the malignancy of tumor cells. G-Rp1 inhibited the activation of IR-induced DNA damage-related signaling molecules and thereby interfered with the IR-increased production of nitric oxide (NO) and interleukin (IL)-1β. The inhibitory effect of G-Rp1 increased the survival rate of mice inoculated with CT26 colon cancer cells by suppressing the phenotypic variation of tumor cells induced by conditioned medium obtained from IR- and LPS-treated J774A.1 macrophages.

Application of the new ICRP iodine biokinetic model for internal dosimetry in case of thyroid blocking

  • Kwon, Tae-Eun;Chung, Yoonsun;Ha, Wi-Ho;Jin, Young Woo
    • Nuclear Engineering and Technology
    • /
    • 제52권8호
    • /
    • pp.1826-1833
    • /
    • 2020
  • Administration of stable iodine has been considered a best measure to protect the thyroid from internal irradiation by radioiodine intake, and its efficacy on thyroid protection has been quantitatively evaluated in several simulation studies on the basis of simple iodine biokinetic models (i.e., three-compartment model). However, the new iodine biokinetic model adopted by the International Commission on Radiological Protection interprets and expresses the thyroid blocking phenomenon differently. Therefore, in this study, the new model was analyzed in terms of thyroid blocking and implemented to reassess the protective effects and to produce dosimetric data. The biokinetic model calculation was performed using computation modules developed by authors, and the results were compared with those of experimental data and prior simulation studies. The new model predicted protective effects that were generally consistent with those of experimental data, except for those in the range of stable iodine administration -72 h before radioiodine exposure. Additionally, the dosimetric data calculated in this study demonstrates a critical limitation of the three-compartment model in predicting bioassay functions, and indicated that dose assessment 1 d after exposure would result in a similar dose estimate irrespective of the administration time of stable iodine.

Radioprotective Effect of Ascorbate in the Liver of ${\gamma}-Irradiated$ Mice (Ascorbate의 방사선 보호효과에 관한 연구)

  • Kim, Dong-Yun;Park, Young-Soon
    • Journal of radiological science and technology
    • /
    • 제23권1호
    • /
    • pp.81-89
    • /
    • 2000
  • In the present study, to determine whether the ascorbate protect against radiation damage and the possible relationship among the radioprotective effects and antioxidant actions, the effects of ascorbate(240 mg/kg, i.p) pretreatment of mice on the survival ratio, splenic weight, major antioxidant enzymes(SOD, catalase and glutathione peroxidase) activities, glutathione contents and lipid peroxidation in the liver were examined for 2 weeks after whole-body ${\gamma}-irradiation$(6.5 Gy). The 30-day survival ratio Increased from 10% to 47% for mice treated with ascorbate. The ascorbate decreased the extent of loss in splenic weight and stimulated recovery of splenic weight in irradiated mice(p<0.01). On the day of 14 after ${\gamma-irradiation}$, the ascorbate pretreatment produced a slight increase of antioxidant enzymes activities and significantly increased reduced glutathione(GSH) contents(P<0.05) in the liver compared with non-treated group. Pretreatment with the ascorbate significantly decreased GSSG/total GSH ratio(p<0.05) without the change of GSSG in the liver and inhibited the radiation-induced increase in the hepatic malondialdehyde levels(p<0.05). In these results, we found that its radioprotective effect by protecting antioxidant enzyme activities and glutathione contents from radiation induced a decrease, and thereby suppressing lipid peroxidation which is induced by free radicals.

  • PDF