• 제목/요약/키워드: Radiological Consequence

검색결과 30건 처리시간 0.028초

MELCOR 코드를 이용한 원자력발전소 중대사고 방사선원항 평가 방법 (An Approach to Estimation of Radiological Source Term for a Severe Nuclear Accident using MELCOR code)

  • 한석중;김태운;안광일
    • 한국안전학회지
    • /
    • 제27권6호
    • /
    • pp.192-204
    • /
    • 2012
  • For a severe accident of nuclear power plant, an approach to estimation of the radiological source term using a severe accident code(MELCOR) has been proposed. Although the MELCOR code has a capability to estimate the radiological source term, it has been hardly utilized for the radiological consequence analysis mainly due to a lack of understanding on the relevant function employed in MELCOR and severe accident phenomena. In order to estimate the severe accident source term to be linked with the radiological consequence analysis, this study proposes 4-step procedure: (1) selection of plant condition leading to a severe accident(i.e., accident sequence), (2) analysis of the relevant severe accident code, (3) investigation of the code analysis results and post-processing, and (4) generation of radiological source term information for the consequence analysis. The feasibility study of the present approach to an early containment failure sequence caused by a fast station blackout(SBO) of a reference plant (OPR-1000), showed that while the MELCOR code has an integrated capability for severe accident and source term analysis, it has a large degree of uncertainty in quantifying the radiological source term. Key insights obtained from the present study were: (1) key parameters employed in a typical code for the consequence analysis(i.e., MACCS) could be generated by MELCOR code; (2) the MELOCR code simulation for an assessment of the selected accident sequence has a large degree of uncertainty in determining the accident scenario and severe accident phenomena; and (3) the generation of source term information for the consequence analysis relies on an expert opinion in both areas of severe accident analysis and consequence analysis. Nevertheless, the MELCOR code had a great advantage in estimating the radiological source term such as reflection of the current state of art in the area of severe accident and radiological source term.

Interfacing between MAAP and MACCS to perform radiological consequence analysis

  • Kim, Sung-yeop;Lee, Keo-hyoung;Park, Soo-Yong;Han, Seok-Jung;Ahn, Kwang-Il;Hwang, Seok-Won
    • Nuclear Engineering and Technology
    • /
    • 제54권4호
    • /
    • pp.1516-1525
    • /
    • 2022
  • Interfacing the output of severe accident analysis with the input of radiological consequence analysis is an important and mandatory procedure at the beginning of Level 3 PSA. Such interfacing between the severe accident analysis code MELCOR and MACCS, one of the most commonly used consequence analysis codes, is relatively tractable since they share the same chemical groups, and the related interfacing software, MelMACCS, has already been developed. However, the linking between MAAP, another frequently used code for severe accident analyses, and MACCS has difficulties because MAAP employs a different chemical grouping method than MACCS historically did. More specifically, MAAP groups by chemical compound, while MACCS groups by chemical element. An appropriate interfacing method between MAAP and MACCS has therefore long been requested by users. This study suggests a way of extracting relevant information from MAAP results and providing proper source term information to MACCS by an appropriate treatment. Various parameters are covered in terms of magnitude and manner of release in this study, and special treatment is made for a bypass scenario. It is expected that the suggested approach will provide an important contribution as a guide to interface MAAP and MACCS when performing radiological consequence analyses.

Development of an Accident Consequence Assessment Code for Evaluating Site Suitability of Light- and Heavy-water Reactors Based on the Korean Technical Standards

  • Hwang, Won Tae;Jeong, Hae Sun;Jeong, Hyo Joon;Kil, A Reum;Kim, Eun Han;Han, Moon Hee
    • Journal of Radiation Protection and Research
    • /
    • 제41권4호
    • /
    • pp.368-372
    • /
    • 2016
  • Background: Methodologies for a series of radiological consequence assessments show a distinctive difference according to the design principles of the original nuclear suppliers and their technical standards to be imposed. This is due to the uncertainties of the accidental source term, radionuclide behavior in the environment, and subsequent radiological dose. Both types of PWR and PHWR are operated in Korea. However, technical standards for evaluating atmospheric dispersion have been enacted based on the U.S. NRC's positions regardless of the reactor types. For this reason, it might cause a controversy between the licensor and licensee of a nuclear power plant. Materials and Methods: It was modelled under the framework of the NRC Regulatory Guide 1.145 for light-water reactors, reflecting the features of heavy-water reactors as specified in the Canadian National Standard and the modelling features in MACCS2, such as atmospheric diffusion coefficient, ground deposition, surface roughness, radioactive plume depletion, and exposure from ground deposition. Results and Discussion: An integrated accident consequence assessment code, ACCESS (Accident Consequence Assessment Code for Evaluating Site Suitability), was developed by taking into account the unique regulatory positions for reactor types under the framework of the current Korean technical standards. Field tracer experiments and hand calculations have been carried out for validation and verification of the models. Conclusion: The modelling approaches of ACCESS and its features are introduced, and its applicative results for a hypothetical accidental scenario are comprehensively discussed. In an applicative study, the predicted results by the light-water reactor assessment model were higher than those by other models in terms of total doses.

Effects of Input Variables in Radiological Accident Consequence Assessment

  • Han, Moon-Hee;Hwang, Won-Tae;Kim, Eun-Han;Suh, Kyung-Suk;Park, Young-Gil
    • 한국원자력학회:학술대회논문집
    • /
    • 한국원자력학회 1998년도 춘계학술발표회논문집(2)
    • /
    • pp.659-664
    • /
    • 1998
  • The importance of input wariables of real-time accident consequence assessment model has been analyzed. Partial correlation coefficients of input variables related to the plume and the ingestion exposure have been estimated using latino hypercube sampling technique. It is known that wind speed and growth dilution rate are the most important variable in plume and ingestion exposure, respectively.

  • PDF

Consequence-based security for microreactors

  • Emile Gateau;Neil Todreas;Jacopo Buongiorno
    • Nuclear Engineering and Technology
    • /
    • 제56권3호
    • /
    • pp.1108-1115
    • /
    • 2024
  • Assuring physical security for Micro Modular Reactors (MMRs) will be key to their licensing. Economic constraints however require changes in how the security objectives are achieved for MMRs. A promising new approach is the so-called performance based (PB) approach wherein the regulator formally sets general security objectives and leaves it to the licensee to set their own specific acceptance criteria to meet those objectives. To implement the PB approach for MMRs, one performs a consequence-based analysis (CBA) whose objective is to study hypothetical malicious attacks on the facility, assuming that intruders take control of the facility and perform any technically possible action within a limited time before an offsite security force can respond. The scenario leading to the most severe radiological consequences is selected and studied to estimate the limiting impact on public health. The CBA estimates the total amount of radionuclides that would be released to the atmosphere in this hypothetical scenario to determine the total radiation dose to which the public would be exposed. The predicted radiation exposure dose is then compared to the regulatory dose limit for the site. This paper describes application of the CBA to four different MMRs technologies.

Radiological Alert Network of Extremadura (RAREx) at 2021:30 years of development and current performance of real-time monitoring

  • Ontalba, Maria Angeles;Corbacho, Jose Angel;Baeza, Antonio;Vasco, Jose;Caballero, Jose Manuel;Valencia, David;Baeza, Juan Antonio
    • Nuclear Engineering and Technology
    • /
    • 제54권2호
    • /
    • pp.770-780
    • /
    • 2022
  • In 1993 the University of Extremadura initiated the design, construction and management of the Radiological Alert Network of Extremadura (RAREx). The goal was to acquire reliable near-real-time information on the environmental radiological status in the surroundings of the Almaraz Nuclear Power Plant by measuring, mainly, the ambient dose equivalent. However, the phased development of this network has been carried out from two points of view. Firstly, there has been an increase in the number of stations comprising the network. Secondly, there has been an increase in the number of monitored parameters. As a consequence of the growth of RAREx network, large data volumes are daily generated. To face this big data paradigm, software applications have been developed and implemented in order to maintain the indispensable real-time and efficient performance of the alert network. In this paper, the description of the current status of RAREx network after 30 years of design and performance is showed. Also, the performance of the graphing software for daily assessment of the registered parameters and the automatic on real time warning notification system, which aid with the decision making process and analysis of values of possible radiological and non-radiological alterations, is briefly described in this paper.

방사능위해성평가 프로그램 RADCONS의 개발 및 적용 (Development and Application of Radiological Risk Assessment Program RADCONS)

  • 정효준;박미선;황원태;김은한;한문희
    • 환경영향평가
    • /
    • 제22권1호
    • /
    • pp.89-97
    • /
    • 2013
  • RADCONS Ver. 1.0 (RADiological CONSequence Assessment Program) was developed for radiological risk assessment in this study. A Gaussian plume model was used to analyze the fate and transport of radionuclides released into the air in case of accidents. Both single meterological data and time series meterological data can be used in RADCONS. To assess the radiological risk of the early phase after an accident, ED (Effective Dose) estimated by both deterministic and probabilistic approaches are presented. These EDs by deterministic and probabilistic will be helpful to efficient decision making for decision makers. External doses from deposited materials by time are presented for quantifying the effects of mid and late phases of an accident. A radiological risk assessment was conducted using RADCONS for an accident scenario of 1 Ci of Cs-137. The maximum of ED for radii of 1,000 meters from the accident point was 8.51E-4 mSv. After Monte-Carlo simulation, considering the uncertainty of the breathing rate and dispersion parameters, the average ED was 8.49E-4, and the 95 percentile was 1.10E-3. A data base of the dose coefficients and a sampling module of the meteorological data will be modified to improve the user's convenience in the next version.

Development of RADCON and Establishments of Its Related System

  • Kim, Kuk-Ki;Lee, Kun-Jai;Park, Won jong
    • 한국원자력학회:학술대회논문집
    • /
    • 한국원자력학회 1996년도 춘계학술발표회논문집(4)
    • /
    • pp.51-56
    • /
    • 1996
  • In a NNP (Nuclear Power Plant) severe accident, radionuclides are dispersed into the air. The official regulatory institute, KINS (Korea Institute of Nuclear Safety), has been authorized and developing Computerized technical Advisory system for the Radiological Emergency preparedness (CARE). In this paper, in line with the CARE system, we presented the result of a modularized intermediate-level emergency dose assessment computer code. The RADCON (RADiological CONsequence analysis) version 3.0, which is operable on PC, is developed for simulating emergency situation by considering continuous washout phenomena, and provide a function of effective emergency planning. The source files are coded by using C language in order to increase the compatibility with the other computer system and modularized to adjust the functions and characteristics of each module fer easy understanding and further modification.

  • PDF

공군 수송기(C-130)를 활용한 대형산불 재난 대응 시 사후관리(CM) 발전방안 (Development Plan for the Consequence Management in Response to Large-Scale Wildfire Disasters Using Air Force Transport Aircraft (C-130))

  • 김상덕;김민기
    • 한국재난정보학회 논문집
    • /
    • 제20권1호
    • /
    • pp.232-243
    • /
    • 2024
  • 연구목적: 최근 기후변화, 자연재해, 그리고 인적 요인에 의한 대형 산불이 동해안 및 태백산맥 지역에서 매년 증가하는 추세를 보인다. 현재 헬리콥터를 활용한 산불 진화가 증가하고 있음에도 불구하고, 대형 산불에 대응하기 위한 초기 진화의 중요성과 양간 산불 진화의 어려움으로 인해 공군 수송기의 도입 필요성이 지속해서 제기되어 왔다. 본 연구는 공군 수송기를 활용한 산불 진화 임무를 효율적으로 수행하기 위한 여러 측면 - 작전 목적의 달성, 운용 환경 극복, 대기 장소 선정 및 효율적 운용 방안 - 에 대한 사후 관리체계 발전 방안을 제시하고자 한다. 연구방법: 산불진화 관련 문헌연구와 고정익항공기를 활용한 산불진화 실험 및 산불진화 헬기의 운용실태 및 운용방법을 기초로 헬기운용 시 장단점 및 대형수송기(C-130)를 활용한 대형산불진화시 효과분석을 통해 운용의 효과성을 분석한다. 연구결과: 대형산불 진화 시 헬기와 고정익항공기(C-130)를 통합 운용시 효과적인 운용, 통제, 지휘체계, 출동요청 및 산불진화 등 효과적인 CM(Consequence Management) 적용방안을 도출하였다. 결론: CM(Consequence Management)의 개념 적용은 우리나라에서 일부 화생방(CBRNE) 방호 분야에 일부 적용되고 있으나 산불진화에 있어서 헬기와 대형항공기(C-130)의 통합운용 시 효율적인 운용, 통제, 지휘체계 정립, 안전관리, 출동요청 및 산불진화 등을 위해 선진국에서 운용되고 있는 CM(Consequence Management)의 개념을 적용하여 진일보 발전된 재해, 재난 사후관리체계를 정립하는 데 기여하도록 하였다.

Development of MURCC code for the efficient multi-unit level 3 probabilistic safety assessment

  • Jung, Woo Sik;Lee, Hye Rin;Kim, Jae-Ryang;Lee, Gee Man
    • Nuclear Engineering and Technology
    • /
    • 제52권10호
    • /
    • pp.2221-2229
    • /
    • 2020
  • After the Fukushima Daiichi nuclear power plant (NPP) accident, level 3 probabilistic safety assessment (PSA) has emerged as an important task in order to assess the risk level of the multi-unit NPPs in a single nuclear site. Accurate calculation of the radionuclide concentrations and exposure doses to the public is required if a nuclear site has multi-unit NPPs and large number of people live near NPPs. So, there has been a great need to develop a new method or procedure for the fast and accurate offsite consequence calculation for the multi-unit NPP accident analysis. Since the multi-unit level 3 PSA is being currently performed assuming that all the NPPs are located at the same position such as a center of mass (COM) or base NPP position, radionuclide concentrations or exposure doses near NPPs can be drastically distorted depending on the locations, multi-unit NPP alignment, and the wind direction. In order to overcome this disadvantage of the COM method, the idea of a new multiple location (ML) method was proposed and implemented into a new tool MURCC (multi-unit radiological consequence calculator). Furthermore, the MURCC code was further improved for the multi-unit level 3 PSA that has the arbitrary number of multi-unit NPPs. The objectives of this study are to (1) qualitatively and quantitatively compare COM and ML methods, and (2) demonstrate the strength and efficiency of the ML method. The strength of the ML method was demonstrated by the applications to the multi-unit long-term station blackout (LTSBO) accidents at the four-unit Vogtle NPPs. Thus, it is strongly recommended that this ML method be employed for the offsite consequence analysis of the multi-unit NPP accidents.