• Title/Summary/Keyword: Radiologic Science

Search Result 477, Processing Time 0.028 seconds

Evaluation of Photoneutron Energy Distribution in the Radiotherapy Room (방사선치료실 내의 광중성자 에너지 분포 평가)

  • Park, Euntae;Ko, Seongjin;Kim, Junghoon;Kang, Sesik
    • Journal of radiological science and technology
    • /
    • v.37 no.3
    • /
    • pp.223-231
    • /
    • 2014
  • Medical linear accelerator is widely used in radiation treatment field, and high energy photons, above 10 MV nominal accelerator voltage, are commonly utilized for the radiation treatment. However, these high energy photons lead the photo-nuclear reaction and the generation of photo-neutrons are accompanied. Thus, these problematic factors are issued in the view of radiation protection. Therefore, linear accelerator and radiation treatment room are simulated from MCNPX program in this study. The measurement points of interest are selected and analyzed, and the resulting effects derived from the properties of photo-neutron are evaluated. Therefore, we realized that the number of generating photo-neutrons was decreased by depending on the distance from the source. No matter what the nominal energy is set, the rates thermal neutrons to fast neutrons are marginal. It is founded that the amount of the thermal neutrons were decreased by depending on the distance from the source.

Evaluation of the Shield Performance of Lead and Tungsten Based Radiation Shields (납과 텅스텐 기반 차폐체의 성능 비교 평가)

  • Jeong-Hwan Park;Hyeon-Seong Lee;Eun-Seo Lee;Hyo-Jeong Han;Yun-Hee Heo;Jae-Ho Choi
    • Journal of radiological science and technology
    • /
    • v.46 no.6
    • /
    • pp.519-526
    • /
    • 2023
  • This study was intended to evaluate the shielding rate of radiation shields manufactured using 3D printers that have recently been used in various fields by comparing them with existing shields made of lead, and to find out their applicability through experiments. A 3D printer shield made of tungsten filament 1 mm, 2 mm, 4 mm shield, RNS-TX (nanotungsten) 1.1 mm, lead 0.2 mmPb, and 1mmPb were exposed to 99mTc, 18F, and 201TI for 15, 30, 45 minutes, and 60 minutes after measuring cumulative dose three times. Based on this, the shielding rate of each shield was calculated based on the dose in the absence of the shield. In addition, 99mTc, 18F, and 201TI were located 100 cm away from the phantom in which the OSLD nano Dot device was inserted, and if there was no shield for 60 minutes, the dose of thyroid was measured using 1.0 mm of lead shield, 1.1 mm of RNS-TX shield, and 2 mm of tungsten shield made by 3D printer. The use of shields during radiation shielding emitted from open radiation sources all resulted in a reduction in dose. The radiation dose emitted from the radionuclides under the experiment was all reduced when the shield was used. This study has been confirmed that tungsten is a material that can replace lead due to its excellent performance and efficiency as shield, and that it even shows the possibility of manufacturing a customized shield using 3D printer.

Development of Unmatched System Model for Iterative Image Reconstruction for Pinhole Collimator of Imaging Systems in Nuclear Medicine (핀홀콜리메이터를 사용한 핵의학영상기기의 순환적 영상 재구성을 위한 비동일 시스템 모델 개발)

  • Bae, Jae-Keon;Bae, Seung-Bin;Lee, Ki-Sung;Kim, Yong-Kwon;Joung, Jin-Hun
    • Journal of radiological science and technology
    • /
    • v.35 no.4
    • /
    • pp.353-360
    • /
    • 2012
  • Diverse designs of collimator have been applied to Single Photon Emission Computed Tomography (SPECT) according to the purpose of acquisition; thus, it is necessary to reflect geometric characteristic of each collimator for successive image reconstruction. This study carry out reconstruction algorithm for imaging system in nuclear medicine with pinhole collimator. Especially, we study to solve sampling problem which caused in the system model of pinhole collimator. System model for a maximum likelihood expectation maximization (MLEM) was developed based on the geometry of the collimator. The projector and back-projector were separately implemented based on the ray-driven and voxel-driven methods, respectively, to overcome sparse sampling problem. We perform phantom study for pinhole collimator by using geant4 application for tomographic emission(GATE) simulation tool. The reconstructed images show promising results. Designed iterative reconstruction algorithm with unmatched system model effective to remove sampling problem artefact. Proposed algorithm can be used not only for pinhole collimator but also for various collimator system of imaging system in nuclear medicine.

Job Analysis for Curriculum Improvement of Radiologic technologist (교육과정 개선을 위한 방사선사 직무분석)

  • Lee, Yoon-Hee;Park, Jae-Hyun
    • Journal of radiological science and technology
    • /
    • v.34 no.3
    • /
    • pp.221-229
    • /
    • 2011
  • This paper reports a series of job analyses to develop a curriculum for radiologic technologists by using DACUM (Development A Curriculum). With this method, the jobs of radiologic technologist were divided into 8 duties and 59 tasks. The results showed that the most important duty was 'exposure management (M=4.72)', the most difficult duty was 'radiation therapy (M=4.29)', and the most frequently performed duty was 'radiation examination (M=4.19)' respectively. In addition these results were compared with the current curriculum. It turned out that there are quite differences between the school education and actual work. For example, 'patients care' duty was identified as the main job but only 57.1% of the schools offer related courses. The current curriculum focused on the theory for the radiologic technologist is not sufficient to perform the field operation.

Evaluation of Present Curriculum for Devlopment of Dept. of Radiological Science Curriculum (방사선학과 교육과정 개선을 위한 현 교육과정 평가)

  • Kang, Se-Sik;Kim, Chang-Soo;Choi, Seok-Yoon;Ko, Seong-Jin;Kim, Jung-Hoon
    • The Journal of the Korea Contents Association
    • /
    • v.11 no.5
    • /
    • pp.242-251
    • /
    • 2011
  • A curriculum of study demands a change as period of time and society evolve. Therefore, at this point where changes are required, this study is to analyze and evaluate the curriculums which will enhance and improve current studies as a preceding stage. The research was based on the survey by groups of education experts and 19 universities with current curriculum of study in radiologic science, and their references. The study was focused on the scope of work by radiologic technologist, change of college systems, academic research about radiologic science, and the improvement and the future of radiologic science field in perspective to globalization and the digital era. In terms of work scope, angiography and interventional radiology at 6 to 8 schools, fluoroscopy at 4 schools, ultrasound and practices at 6 schools, magnetic resonance image at 2 schools were found to be unestablished. The basic medical subjects, humuan physiology, human anatomy and practices, medical terminology courses were set up at most schools; however, pathology at 5 schools, image anatomy at 6 schools, clinical medicine at 11 schools were yet opened. Among the basic science and engineering subjects, general biology and its practices at 11 schools, general physics and its practices at 14 schools, and general chemistry and its practices at 8 schools were established which is about a half from a total number of schools. Only 4-5 schools established digital subjects such as, health computer, computer programming, PACS which are the basic major subjects. In order to provide academic improvement in radiologic science, digitalized education and globalization, and basis for future-oriented education for the field of radiologic science, including expanded scope of work, it is acknowledged that curriculums that are opened and run at each school need to be standardized. Therefore, the need for introduction of certificate for the radiologic science education courses are suggested.

Fabrication of Virtual Frisch-Grid CdZnTe ${\gamma}$-Ray Detector (가상 Frisch-그리드를 이용한 CdZnTe 감마선 소자 제작)

  • Park, Chansun;Kim, Pilsu;Cho, PyongKon;Choi, Jonghak;Kim, Jungmin;Kim, KiHyun
    • Journal of radiological science and technology
    • /
    • v.37 no.4
    • /
    • pp.253-259
    • /
    • 2014
  • Large volume of $6{\times}6{\times}12mm^3$ CdZnTe ${\gamma}$-ray detector was fabricated with CdZnTe single crystals grown by Traveling Heater Method (THM) to evaluate the energy resolution of 662 keV in $^{137}Cs$. Hole tailing effect which originated from the large mobility difference in electron and hole degrade energy resolution of radiation detector and its effects become more severe for a large volume detectors. Generally, single carrier collection technique is very useful method to remove/minimize hole tailing effect and thereby improvement in energy resolution. Virtual Frisch-grid technique is also one of single charge collection method through weighting potential engineering and it is very simple and easily applicable one. In this paper, we characterized CZT detector grown by THM and evaluated the effectiveness of virtual Frisch-grid technique for a high energy gamma-ray detector. The proper position and width of virtual Frisch-grid was determined from electric field simulation using ANSYS Maxwell ver. 14.0. Energy resolution of 2.2% was achieved for the 662 keV ${\gamma}$-peak of $^{137}Cs$ with virtual Frisch-grid CdZnTe detector.

Analysis on Working Force Supply of Radiologic Technologist in Korea (국내 방사선사 인력수급 현황 분석)

  • Choi, Kyoungho;Cho, Jung Keun
    • Journal of Digital Convergence
    • /
    • v.15 no.7
    • /
    • pp.489-495
    • /
    • 2017
  • To prevent over supplying of workforce with radiologic technologist license, effort to create new jobs related to radioactive from medical field and radiation-related academia should be put first. For this, investigating present condition is required by close analysis of working force supply related to radiation. Therefore in this research, basic data useful for developing future radiation-related policy and plan is provided from analysis of present supplying condition of radiologic technologists in Korea. Results are as following. First, number of people qualified as radiologic technologists consistently increased; 15,639 more people took the license in 2014 compared with 2004, showing growth rate of 75.6%. Second, about 65.7%, most of workforce related to radiation engaged in medical area. Third, estimating supply and demand of radiologic technologists by time period of 5 years from 2015 to 2040, about 6,000 number of surplus work force was predicted around 2020. Fourth, satisfaction of graduates who majored in radiology was quite low for their first occupation. These results implicate necessity of systemic supplementation which can expand medical areas where radiologic technologists can work.

Development of a Spectrum Analysis Software for Multipurpose Gamma-ray Detectors (감마선 검출기를 위한 스펙트럼 분석 소프트웨어 개발)

  • Lee, Jong-Myung;Kim, Young-Kwon;Park, Kil-Soon;Kim, Jung-Min;Lee, Ki-Sung;Joung, Jin-Hun
    • Journal of radiological science and technology
    • /
    • v.33 no.1
    • /
    • pp.51-59
    • /
    • 2010
  • We developed an analysis software that automatically detects incoming isotopes for multi-purpose gamma-ray detectors. The software is divided into three major parts; Network Interface Module (NIM), Spectrum Analysis Module (SAM), and Graphic User Interface Module (GUIM). The main part is SAM that extracts peak information of energy spectrum from the collected data through network and identifies the isotopes by comparing the peaks with pre-calibrated libraries. The proposed peak detection algorithm was utilized to construct libraries of standard isotopes with two peaks and to identify the unknown isotope with the constructed libraries. We tested the software by using GammaPro1410 detector developed by NuCare Medical Systems. The results showed that NIM performed 200K counts per seconds and the most isotopes tested were correctly recognized within 1% error range when only a single unknown isotope was used for detection test. The software is expected to be used for radiation monitoring in various applications such as hospitals, power plants, and research facilities etc.

Dental radiology reporting status and recording frequency of reporting items in Korea

  • Jinwoo Choi
    • Imaging Science in Dentistry
    • /
    • v.53 no.1
    • /
    • pp.35-42
    • /
    • 2023
  • Purpose: This study investigated the current dental radiology reporting methods and the recording rate of 10 mandatory reporting items in Korea. Materials and Methods: An original online survey created using Google Forms was distributed to dental practitioners. The survey asked about the participants' age, experience, workplace, use of radiologic equipment, radiology reporting methods, and recording reporting items. Results: In total, 354 responses were analyzed. Radiologic reporting in dental charts was the most commonly used method for each modality. Four out of 10 mandatory items were recorded at a high rate, but the remaining 6 items had substantially lower recording rates, often below 50%. The participants who reported radiographic findings through other separate methods had higher item scores than those who wrote findings in dental charts(P<0.05). Conclusion: Radiologic societies and dental associations should encourage the use of separate reports for radiographic examinations. Education regarding radiology reports and the justification for reporting items should be reinforced in dental schools, training courses on radiology, and the continuing education curriculum.

Comparison of Image Quality and Dose According to the Arm Positioning in the Chest CT (흉부 CT 검사에서 환자 팔의 위치에 따른 영상의 화질과 선량 비교)

  • Yoo, Muyeon;Park, Sam;Jang, Heuijung;Lee, Hyojin;Lee, Jongwoong;Kweon, Daecheol
    • Journal of the Korean Society of Radiology
    • /
    • v.8 no.2
    • /
    • pp.75-79
    • /
    • 2014
  • The aim of this retrospective research was to investigate the influence of the patient's arm position on radiation dose and scanning during CT. Chest CT image created image degradation, artifact and overdose to the patient due to the difference of the chest thickness. Therefore, the patient's arm should up position during the CT chest examination. In 2012, 1,642 patients underwent chest CT examination in Seoul K hospital. 118 chest CT examination performed hands down position. The average DLP value of the CT chest arm up examination was 275 $mGy{\cdot}cm$. The average DLP value of the CT chest arm down examination was 312.46 $mGy{\cdot}cm$. In the retrospective study with same patient, The average DLP value of the CT chest examination arm up vigorously was 267.5 $mGy{\cdot}cm$. The average DLP value of the CT chest arm down examination was 307.5 $mGy{\cdot}cm$. Chest CT scan without raising arm created linear artifact due to the lack of X-ray photons which is the thickest part of the human body of shoulder area. In conclusion, arm positioning patients' arms above the shoulders at CT of the chest increases image quality and substantially reduces effective radiation dose.