• Title/Summary/Keyword: Radioisotopes

Search Result 190, Processing Time 0.018 seconds

Calculation of Effective Half-life of Gamma Emission Radionuclide using Bio-kinetic Model (생체역동학 모델을 이용한 감마선 방출 핵종의 유효반감기 계산)

  • Lee, Sang-Kyung;Jeong, Kyu-Hwan;Lee, Ji-Yon;Kim, Bong-Gi;Kim, Jung-Min
    • Journal of Radiation Industry
    • /
    • v.12 no.4
    • /
    • pp.277-285
    • /
    • 2018
  • Patients administered radioisotope for medical purposes are regulated by each country to quarantine them until their body's radioactivity contents decrease below release criteria. To predict the quarantine period and provide it to medical staffs and patients, it is necessary to approach the assessment of the exposure dose of persons due to patients in a realistic manner. For this purpose, a whole-body effective half-life should be applied to the dose assessment equation instead of the physical half-life. In this study, we constructed a bio-kinetic model for each nuclear species based on the ICRP publication to obtain a whole-body effective half-life of 10 unsealed gamma-ray emitting nuclei from the notification of Nuclear Safety and Security Commission, and calculated the effective half-life mathematically by simulating the distribution of the radioisotope administered in the whole body as well as each organ scale. The whole-body effective half-life of $^{198}Au$, $^{67}Ga$, $^{123}I$, $^{111}In$, $^{186}Re$, $^{99m}Tc$, and $^{201}TI$ were 1,93, 2.57, 0.295, 2.805, 1.561, 0.245, and 2.397 days respectively. However, it was found to be undesirable to offer a single value of the effective half-life of $^{125}I$, $^{131}I$, and $^{169}Yb$ because the changes in the effective half-life show no linearity. A bio-kinetic model created for the internal exposure assessment has been shown to be possible to calculate the effective half-life of radioisotopes administered in the patient's body, but subsequent studies of radiolabeled compounds are required as well.

Analysis of Public Notice of NSSC and Field Application Case Regarding Security of Radioisotopes (원자력안전위원회 방사성동위원소 보안관련 고시 및 현장 적용 사례 분)

  • Lee, Hyun-Jin;Lee, Jin-Woo;Jeong, Gyo-Seong;Lee, Sang-bong;Kim, Chong-Yeal
    • Journal of Radiation Industry
    • /
    • v.12 no.4
    • /
    • pp.303-310
    • /
    • 2018
  • Since Roentgen discovered X-rays, radiation sources have been utilized for many areas such as agriculture, industry, medicine and fundamental chemical research. As a result, human society has gained lots of benefits. However, if a radioactive material is used for the malicious purpose, it causes serious consequences to humanity and environment. Consequently, international organizations including International Atomic energy Agency (IAEA) have been emphasizing establishment and implementation of security management to prevent sabotage and illicit trafficking of radioactive materials. For this reason, the rule of technical standards of radiation safety management was revised and the public notice of security management regarding radioisotope was legislated in 2015 by Nuclear Safety and Security Commission (NSSC). Several radioactive sources which have to be regulated under the above rule and the public notice have been utilized in Advanced Radiation Technology Institute (ARTI) of Korea Atomic Energy Research Institute (KAERI). In order to control them properly, security management system such as access control and physical protection has been adapted since 2015. In this paper, we have analyzed the public notice of NSSC and its field application case. Based on the results, we are going to draw improvement on the public notice of NSSC and security system.

Radiation measurement and imaging using 3D position sensitive pixelated CZT detector

  • Kim, Younghak;Lee, Taewoong;Lee, Wonho
    • Nuclear Engineering and Technology
    • /
    • v.51 no.5
    • /
    • pp.1417-1427
    • /
    • 2019
  • In this study, we evaluated the performance of a commercial pixelated cadmium zinc telluride (CZT) detector for spectroscopy and identified its feasibility as a Compton camera for radiation monitoring in a nuclear power plant. The detection system consisted of a $20mm{\times}20mm{\times}5mm$ CZT crystal with $8{\times}8$ pixelated anodes and a common cathode, in addition to an application specific integrated circuit. The performance of the various radioisotopes $^{57}Co$, $^{133}Ba$, $^{22}Na$, and $^{137}Cs$ was evaluated. In general, the amplitude of the induced signal in a CZT crystal depends on the interaction position and material non-uniformity. To minimize this dependency, a drift time correction was applied. The depth of each interaction was calculated by the drift time and the positional dependency of the signal amplitude was corrected based on the depth information. After the correction, the Compton regions of each spectrum were reduced, and energy resolutions of 122 keV, 356 keV, 511 keV, and 662 keV peaks were improved from 13.59%, 9.56%, 6.08%, and 5%-4.61%, 2.94%, 2.08%, and 2.2%, respectively. For the Compton imaging, simulations and experiments using one $^{137}Cs$ source with various angular positions and two $^{137}Cs$ sources were performed. Individual and multiple sources of $^{133}Ba$, $^{22}Na$, and $^{137}Cs$ were also measured. The images were successfully reconstructed by weighted list-mode maximum likelihood expectation maximization method. The angular resolutions and intrinsic efficiency of the $^{137}Cs$ experiments were approximately $7^{\circ}-9^{\circ}$ and $5{\times}10^{-4}-7{\times}10^{-4}$, respectively. The distortions of the source distribution were proportional to the offset angle.

Evaluating Activation for 50 MeV Cyclotron Irradiation Service using Monte Carlo Method and Inventory Code (50 MeV 사이클로트론 조사 서비스로 인한 방사화 평가)

  • Kim, Sangrok;Kim, Gi-sub;Heo, Jaeseung;Ahn, Yunjin
    • Journal of the Korean Society of Radiology
    • /
    • v.15 no.4
    • /
    • pp.415-427
    • /
    • 2021
  • Korea Institute of Radiological and Medical Sciences has provided various beam irradiation services to researchers using a 50 MeV cyclotron beam line. In particular, since the neutron beam service uses the nuclear reaction between protons and beryllium, the possibility of activation of the irradiated sample increases by using a high current. In this study, MCNP 6.2 and FISPACT-II 4.0 were used to evaluate the possible activation during the 35 MeV 20 ㎂ neutron beam service, which is preferred by the researchers. As a result of the calculation, if the iron, copper, and tungsten samples were irradiated for more than 1 hour, long-lived radioisotopes were produced and their radioactivity exceeded the standard level for self-disposal. Under the conditions of 2 hours of daily irradiation, no activation occurred in the building materials, and the internal exposure of workers due to air activation inside the irradiation room was very insignificant. And when this air was discharged to environment, the radioactivity including this air was also satisfied the emission standard.

Influence of operation of thermal and fast reactors of the Beloyarsk NPP on the radioecological situation in the cooling pond. Part 1: Surface water and bottom sediments

  • Panov, Aleksei;Trapeznikov, Alexander;Trapeznikova, Vera;Korzhavin, Alexander
    • Nuclear Engineering and Technology
    • /
    • v.54 no.8
    • /
    • pp.3034-3042
    • /
    • 2022
  • The results of radioecological monitoring of the cooling pond Beloyarsk NPP (Russia) have been presented. The influence of waste technological waters of thermal and fast NPP reactors on the content of artificial radionuclides in surface waters and bottom sediments of the Beloyarsk reservoir has been studied. The long-term dynamics of the specific activity of 60Co, 90Sr, 137Cs and 3H in the main components of the freshwater ecosystem at different distances from the source of radionuclide discharge has been estimated. Critical radionuclides (60Co and 137Cs), routes of their entry and periods of maximum discharge of radioisotopes into the cooling pond have been determined. It is shown that the technology of electricity generation at Beloyarsk NPP, based on fast reactors, has a much smaller effect on the flow of artificial radionuclides into the freshwater ecosystem of the reservoir. During the entire period of monitoring studies, the decrease in the specific activity of radionuclides from NPP origin in surface waters was 4.3-74.5 times, in bottom sediments 10-505 times. The maximum discharge of artificial radionuclides into the reservoir was noted during the period of restoration and decontamination work aimed at eliminating emergencies at the AMB thermal reactors of the first stage of the Beloyarsk NPP.

Radioisotope identification using sparse representation with dictionary learning approach for an environmental radiation monitoring system

  • Kim, Junhyeok;Lee, Daehee;Kim, Jinhwan;Kim, Giyoon;Hwang, Jisung;Kim, Wonku;Cho, Gyuseong
    • Nuclear Engineering and Technology
    • /
    • v.54 no.3
    • /
    • pp.1037-1048
    • /
    • 2022
  • A radioactive isotope identification algorithm is a prerequisite for a low-resolution scintillation detector applied to an unmanned radiation monitoring system. In this paper, a sparse representation with dictionary learning approach is proposed and applied to plastic gamma-ray spectra. Label-consistent K-SVD was used to learn a discriminative dictionary for the spectra corresponding to a mixture of four isotopes (133Ba, 22Na, 137Cs, and 60Co). A Monte Carlo simulation was employed to produce the simulated data as learning samples. Experimental measurement was conducted to obtain practical spectra. After determining the hyper parameters, two dictionaries tailored to the learning samples were tested by varying with the source position and the measurement time. They achieved average accuracies of 97.6% and 98.0% for all testing spectra. The average accuracy of each dictionary was above 96% for spectra measured over 2 s. They also showed acceptable performance when the spectra were artificially shifted. Thus, the proposed method could be useful for identifying radioisotopes in gamma-ray spectra from a plastic scintillation detector even when a dictionary is adapted to only simulated data. Furthermore, owing to the outstanding properties of sparse representation, the proposed approach can easily be built into an insitu monitoring system.

Establishing a pre-mining baseline of natural radionuclides distribution and radiation hazard for the Bled El-Hadba sedimentary phosphate deposits (North-Eastern Algeria)

  • S. Benarous;A. Azbouche;B. Boumehdi;S. Chegrouche;N. Atamna;R. Khelifi
    • Nuclear Engineering and Technology
    • /
    • v.54 no.11
    • /
    • pp.4253-4264
    • /
    • 2022
  • Since the implementation of the phosphate project in Bled El-Hadba (BEH) deposit, western region of Tébessa, no detailed study has been conducted to assess the natural radioactivity distribution and the associated radiological risk parameter for this open-pit mine. For the sake of determining a credible premining reference database for the region of interest, 21 samples were collected from different geological layers of the above-mentioned deposit. Gamma Spectrometry was applied for measuring radioactivity using a high resolution HPGe semiconductor detector. The obtained activity results have shown a significant broad variation in the radioactive contents for the different phosphate samples. The total average concentrations (in Bq·kg-1) for 226Ra, 238U, 235U, 232Th and 40K computed for the different type of phosphate layers were found to be 570 ± 169, 788 ± 280, 52 ± 18, 66 ± 6 and 81 ± 18 respectively. The mean activity concentrations of the measured radionuclides were compared to other regional and worldwide deposits. The ratios between the detected radioisotopes have been calculated for spatial distribution of natural radionuclides in the study area. Based on the aforementioned activity concentrations, the corresponding radiation hazard parameters were assessed. Correlations between the obtained parameters were drawn and a multivariate statistical analysis (Pearson Correlation, Cluster and Factor analysis) was carried out in order to identify the existing relationships.

A closer look at the structure and gamma-ray shielding properties of newly designed boro -tellurite glasses reinforced by bismuth (III) oxide

  • Hammam Abdurabu Thabit;Abd Khamim Ismail;N.N. Yusof;M.I. Sayyed;K.G. Mahmoud;I. Abdullahi;S. Hashim
    • Nuclear Engineering and Technology
    • /
    • v.55 no.5
    • /
    • pp.1734-1741
    • /
    • 2023
  • This work presents the synthesis and preparation of a new glass system described by the equation of (70-x) B2O3-5TeO2 -20SrCO3-5ZnO -xBi2O3, x = 0, 1, 5, 10, and 15 mol. %, using the melt quenching technique at a melting temperature of 1100 ℃. The photon-shielding characteristics mainly the linear attenuation coefficient (LAC) of the prepared glass samples were evaluated using Monte Carlo (MC) simulation N-particle transport code (MCNP-5) at gamma-ray energy extended from 59 keV to 1408 keV emitted by the radioisotopes Am-241, Ba-133, Cs-137, Co-60, Na-22, and Eu-152. Furthermore, we observed that the Bi2O3 content of the glasses had a significantly stronger impact on the LAC at 59 and 356 keV. The study of the lead equivalent thickness shows that the performance of fabricated glass sample with 15 mol.% of Bi2O3 is four times less than the performance of pure lead at low gamma photon energy while it is enhanced and became two times lower the perforce of pure lead at high energy. Therefore, the fabricated glasses special sample with 15 mol.% of Bi2O3 has good shielding properties in low, intermediate, and high energy intervals.

Clinical Review of the Current Status and Utility of Targeted Alpha Therapy (표적 알파 치료의 현황 및 유용성에 대한 임상적 고찰)

  • Sang-Gyu Choi
    • Journal of radiological science and technology
    • /
    • v.46 no.5
    • /
    • pp.379-394
    • /
    • 2023
  • Targeted Alpha Therapy (TAT) is a new method of cancer treatment that protects normal tissues while selectively killing tumor cells using high cytotoxicity and short range of alpha particles, and target alpha therapy is a highly specific and effective cancer treatment strategy, and its potential has been proven through many clinical and experimental studies. This treatment method accurately delivers alpha particles by selecting specific molecules present in cancer tissue, which has an effective destruction and tumor suppression effect on cancer cells, and one of the main advantages of target alpha treatment is the physical properties of alpha particles. Alpha particles have a very high energy and short effective distance, interacting with target molecules in cancer tissues and having a fatal effect on cancer cells, which is known to cause DNA damage and cell death in cancer cells. TAT has shown positive results in preclinical and clinical studies for various types of cancers, especially those that resist or are unresponsive to existing treatments, but there are several challenges and limitations to overcome for successful clinical transition and application. These include the provision and production of suitable alpha radioisotopes, optimization of target vectors and delivery formulations, understanding and regulation of radiological effects, accurate dosage calculation and toxicity assessment. Future research should focus on developing new or improved isotopes, target vectors, transfer formulations, radiobiological models, combination strategies, imaging techniques, etc. for TAT. In addition, TAT has the potential to improve the quality of life and survival of cancer patients due to the possibility of a new treatment for overcoming cancer, and to this end, prospective research on more carcinomas and more diverse patient groups is needed.

Awareness Patterns Regarding Radiation Safety Management in Fields Related to Radiation Safety Regulations: Focusing on Companies that Must Report Radiation Sources

  • Eunok Han;Yoonseok Choi
    • Journal of Radiation Protection and Research
    • /
    • v.49 no.1
    • /
    • pp.19-28
    • /
    • 2024
  • Background: This study aims to analyze radiation safety management and regulatory perceptions, focusing on companies that must report radiation sources. The intent is to reduce the gap between regulation measures and addressing real concerns while improving practical safety management measures and regulations for all stakeholders. Materials and Methods: Radiation safety officers at a total of 244 reporting companies using radiation generators (79.8%) and sealed radioisotopes (15.1%) were surveyed using a questionnaire. Results and Discussion: The perception that regulation is stronger than the actual risk of the radiation source used was 3.47 points (out of 5 points), indicating a score above average. The most important factors and considerations were education and training (48%) as a human factor, safety devices of the radiation source (71.3%) as a hazardous material factor, the use of radiation (50.8%) as an organizational environment, and the radiation effect of nearby facilities (67.2%) as a physical environment. Radiation safety management educational experience (F= 5.030, p< 0.01), the group with high subjective knowledge (t= 6.017, p< 0.001), and the group with high objective knowledge (t= 1.989, p< 0.05) was found to be better at radiation safety management. Conclusion: It is necessary to standardize the educational experience regarding radiation safety management because each staff member has individual differences in educational experience. It is necessary to provide more information on how to solve radiation accidents via educational content. Applying radiation safety regulations based on the factors that significantly affect radiation safety management shown in this survey will help improve safety.